COUNTER-STRATEGY GUIDED REFINEMENT OF GR(1) TEMPORAL LOGIC SPECIFICATIONS

Salar Moarref
Joint work with Rajeev Alur & Ufuk Topcu
University of Pennsylvania
August 2013
Reactive Synthesis

- Specification
 - LTL, CTL, ...
- Game
 - Environment
 - System
- Realizability?
 - Yes: strategy
 - No: counter-strategy
Motivation

- Developing a correct and complete formal specification is challenging and tedious
 - initial specifications are often unrealizable
 - due to inadequate environment assumptions
- Unrealizable specification cannot be executed or simulated
 - Debugging an unrealizable specification is hard
Motivation

- Developing a correct and complete formal specification is challenging and tedious
 - initial specifications are often unrealizable
 - due to inadequate environment assumptions
- Unrealizable specification cannot be executed or simulated
 - Debugging an unrealizable specification is hard

Goal
Automatically refining the constraints over the environment by adding assumptions in order to achieve realizability.
Applications

- Giving the user an insight into the specification
- Correcting the specification
- Constructing interface rules between the components in the context of compositional synthesis
- And more...
Main Flow of the Method

1. Specification
2. Generating Candidates
3. Counter-Strategy
4. Patterns Synthesis
5. Subset of Variables

Choose & Add

Realizable
- Yes: Done
- No:
 - Generating Candidates
 - Counter-Strategy
 - Patterns Synthesis
 - Subset of Variables
Specification

Choose & Add

Generating Candidates

Subset of Variables

Patterns Synthesis

Counter-Strategy

Realizable

Yes

Done

No
Patterns

- Environment behaviors learnt from the counter-strategy as LTL formulas of the form
 - $\Diamond \Box \psi$, $\Diamond \psi$, $\Diamond (\psi_1 \land \Diamond \psi_2)$

- Hold over all runs of the abstraction of the counter-strategy

- Synthesized using simple graph search algorithms

Generalized Reactivity(1) (GR(1))

- Environment assumption, φ_{env}

 $$\theta_{\text{init}}^e \land \bigwedge_{i \in I_e} \Box \psi_i^e \land \bigwedge_{k \in K_e} \Diamond J_k^e$$

- System requirement, φ_{sys}

 $$\theta_{\text{init}}^s \land \bigwedge_{i \in I_s} \Box \psi_i^s \land \bigwedge_{k \in K_s} \Diamond J_k^s$$

- Initial conditions
- Safety + transitions
- Fairness + goals
Abstraction of the Counter-Strategy
Eventually Always Patterns

- Complement of liveness formulas
- $\Diamond \Box (q_1 \lor q_2 \lor q_3)$

![Diagram showing strongly connected components including cycle]

q_0 connected to q_1, q_1 to q_2, q_2 to q_1, q_3 to q_3, and q_3 to q_0.
Generating Candidate Assumptions

- Replace each state in pattern with corresponding state predicate
 - $\Diamond \Box (q_1 \lor q_2 \lor q_3)$ leads to
 - $\Diamond \Box ((c \land r) \lor (c \land \neg r) \lor (c \land r)) = \Diamond \Box c$

- Complement the formula
 - $\Box \Diamond \neg c$

Diagram:
- State predicate: $c \land r$
- States S0, S1, S2, S3 with transitions:
 - S0: 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0
 - S1: 0, 0, 0, 0
 - S2: 0, 1, 0, 0, r=False
 - S3: 0, 1, 1, 0, r=True

Nodes:
- q_0, q_1, q_2, q_3 with transitions:
 - $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3$
Conclusions & Future Work

- **Summary**
 - Refining the unrealizable specification by adding assumptions
 - Simple GR(1) formulas
 - As weak as possible in the specified structure

- **Future work**
 - Taking advantage of multiplicity of generated candidates
 - Extending the method to more general subsets of LTL
 - Synthesizing interfaces between components