Basic Problems in Multi-View Modeling

Christos Stergiou
Jan Reineke, Stavros Tripakis

Saarland University, Aalto University,
University of California, Berkeley, University of Pennsylvania
Multi-View Modeling

Complex system ➔ many design teams ➔ many viewpoints ➔ many perspectives ➔ many models = views
Problem: View Consistency

Partially overlapping content \rightarrow potential for contradictions

Industry: “system integration is the biggest issue”
Example

Inconsistent
Goals

• **Verification**: is a set of views consistent
• **Synthesis**: construct a system that produces a set of views
• We focus on behavioral/dynamic views
Outline

• An abstract formal framework for multi-view modeling
• Instantiation of the framework for discrete systems
• Instantiation for regular and ω-regular languages
Outline

• An abstract formal framework for multi-view modeling
• Instantiation of the framework for discrete systems
• Instantiation for regular and \(\omega\)-regular languages
What are views, formally?

• **Semantically:** systems & views are **sets of behaviors**

• **Syntactically:** they can be any formal model that generates behaviors
 – e.g., automata, transition systems, differential equations, …

• Views are **derived** from systems
 – View = system “aspect”
How are views derived from systems?

- Intuition: view = projection of a system
- Generalization: views are defined by abstraction functions
 - System behavior domain: U
 - View behavior domain: D
 - Abstraction function: $a: U \rightarrow D$
- Example
 - System has 5 state variables: x, y, z, a, b
 - Abstraction keeps only 3: x, y, z
 - Abstraction function: projection (variable elimination)
Potential for Inconsistencies

• What if we don’t have the system, but only have some views?

• Example:
 – System has 5 variables: x, y, z, a, b
 – View V1 is over only 3 variables: x, y, z
 – View V2 is over x, a, b

 Overlapping views
 \rightarrow

 Potential for inconsistencies
What is View Consistency?

A set of views are consistent = \(\exists \text{witness system} \) that could generate those views
View Consistency, formally

• Given a set of abstraction functions a_1, a_2, \ldots, a_n

• Given a set of views V_1, V_2, \ldots, V_n

• The views are consistent if there exists witness system S such that:
 – For all $i = 1, \ldots, n$: $V_i = a_i(S)$
Conformance

• Sometimes requiring “=” may be too strict
• Generalize to conformance relations
• Examples:
 – Top view must **over-approximate**: drop something without hitting the structure.
 – Top view must **under-approximate**: land a helicopter on the structure.
Outline

• An abstract formal framework for multi-view modeling
• Instantiation of the framework for discrete systems
• Instantiation for regular and ω-regular languages
Discrete Systems = Symbolic Transition Systems

- **Fully observable** discrete system (FOS): \((X, \theta, \phi)\)
 - \(X\): set of variables
 - \(\theta\): formula on \(X\) characterizing initial states
 - \(\phi\): formula on \(X, X'\) characterizing transition relation
- Semantics: set of generated infinite behaviors
- Problem: **FOS not closed under projection**
 - E.g., system with two variables, \(x, y\), where \(x\) counts modulo 5, and \(y\) boolean \(x = 0\)
 - Projection on \(y\) is not representable as a FOS
Discrete Systems = Symbolic Transition Systems

- Discrete system with internal variables: (X, Z, θ, ϕ)
 - X : set of variables
 - Z : set of internal **unobservable** variables
 - θ : formula on X, Z characterizing initial states
 - ϕ : formula on X, Z, X', Z' characterizing transition relation

- Trivially closed under projection (=hiding)
 - Move hidden variables from X to Z

- Also closed under union & intersection
Views for Discrete Systems

• Abstraction functions: projections (hiding variables)
• Conformance relations: \subseteq, \supseteq, $=$
• View consistency checking:
 \[V_1 = (Y_1, W_1, \theta_1, \phi_1), V_2 = (Y_2, W_2, \theta_2, \phi_2) \]
 – Trivial for \subseteq, \supseteq: empty and “true” systems
 – Witness system
 \[S = (Y_1 \cup Y_2, W_1 \cup W_2, \theta_1 \land \theta_2, \phi_1 \land \phi_2) \]
 – This solve also synthesis of witness system
Outline

• An abstract formal framework for multi-view modeling
• Instantiation of the framework for discrete systems
• Instantiation for regular and ω-regular languages
Views for Languages

• Abstraction function: alphabet projection

\[\Sigma_1 = \{a, b, c\}, \Sigma_2 = \{a, b\} \]

\[w = abccac \]

\[w' = h_{\Sigma_2}(w) = aba \]

• View consistency: given \(L_1, L_2 \) on \(\Sigma_1, \Sigma_2 \), find \(L \) such that

\[h_{\Sigma_1}(L) = L_1, h_{\Sigma_2}(L) = L_2 \]
Language View Consistency (1/2)

• Inverse projection of \(L \) on \(\Sigma \), on alphabet \(\Sigma' \supseteq \Sigma \)
 \[
h^{-1}_{\Sigma'}(L) = \bigcup \{ L' \text{ language on } \Sigma' \mid h_{\Sigma}(L') = L \}
 \]

• \(L_1 \) and \(L_2 \) are consistent iff:
 \[
 L = h^{-1}_{\Sigma_1 \cup \Sigma_2}(L_1) \cap h^{-1}_{\Sigma_1 \cup \Sigma_2}(L_2)
 \]
 \[
 h_{\Sigma_1}(L) = L_1 \text{ and } h_{\Sigma_2}(L) = L_2
 \]

• How can we compute \(h^{-1}_{\Sigma} \) ?
Language View Consistency (2/2)

- $h_{\Sigma'}^{-1}$ for regular languages: self-loops

$$\sum = \{a\} \quad \Sigma' = \{a, b\}$$

- $h_{\Sigma'}^{-1}$ for ω-regular languages: new states

$$L = a^\omega \quad L' = (a + b)^\omega \quad h_{\{a\}}(L') = a^* + a^\omega$$

$$L' = (b^*a)^\omega \quad h_{\{a\}}(L') = a^\omega$$
Conclusion

• First steps in formalizing multi-view topic
• “Basic Problems in Multi-View Modeling” TACAS 2014

• Future Work
 – Mixed notions of consistency
 • Combine over and under approximations
 – Different types of abstraction functions
 • Masking
 • Round abstraction
 – Heterogeneous views
 • Discrete vs. continuous vs. hybrid
Thank you

• Questions?