Robot Manipulation Planning with Co-safe LTL Goals

Keliang He Rice University

ExCAPE Meeting 2015
Robot Manipulation

Packing/unpacking
Preparing food
Serving at a Cafe
Task Formulation

Objects

Locations of interest with labels

Atomic Propositions

Object X is at a location with label Y

Manipulation Task:
Co-safe LTL formula over these atomic propositions
Temporal Manipulation Tasks

• State of the art in manipulation
 – A to B (Reachability)

• Complex tasks involve many steps
 – Detailed order may be irrelevant to user
 – Choice may determine feasibility

Offer snacks to all guests and ask for tip from the guests already served.

\[\bigwedge_{i=1}^{k} (\Diamond (\text{snack} \in \text{guest}_i \land \Diamond \text{tip} \in \text{guest}_i)) \]
Challenges

- ≥ 6 DoF Manipulator
- Complex Workspace
- Many Objects
- Temporal Task

HUGE continuous search space

? Abstraction

Smaller Problem
Smaller Problem
Smaller Problem

? Solving Strategy
Planning Framework

Manipulation Problem
Complexity: Dimensionality of manipulation

Planning Task (Co-safe LTL) → DFA → Modified 3-Layered Synergistic Planner → Continuous Trajectory

Abstraction

Actions Objects Workspace

Complexity: Dynamics of the system

Navigation Problem

Object

Action

Workspace

[ICRA 2015]
Abstraction - Overview

• Labeled, weighted graph
Abstraction - Node

Composition of
- Action being performed
- Object locations
- End effector location
- Object in gripper

<table>
<thead>
<tr>
<th>An abstraction graph node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Object 1 Location</td>
</tr>
<tr>
<td>Object 2 Location</td>
</tr>
<tr>
<td>Robot Location</td>
</tr>
<tr>
<td>Object in Gripper</td>
</tr>
</tbody>
</table>
Abstraction - Action Graph

- Currently 4 actions
 - Grasp, Place
 - Precomputed primitive
 - Performed using visual feedback
 - Hold, Move
 - Require planning
 - Must consider model of environment
- Could be extended to add more actions
Abstraction - Example
Synergistic Layers

Do not reconsider actions already found

Only some actions require motion planning
Example - Baxter Cafe

First trash the empty can, then offer snacks to all guests and ask for tip from the guests already served.

\[
\Diamond \left(\text{can} \in \text{trash} \land \bigwedge_{i=1}^{k} \Diamond \left(\text{snack} \in \text{guest}_i \land \Diamond \text{tip} \in \text{guest}_i \right) \right)
\]
Example - PR2 Simulation

Task: Move object of interest to region of interest

◊ (object of interest ∈ location of interest)
Runtime

<table>
<thead>
<tr>
<th>Scenario</th>
<th># Objects</th>
<th># DFA States</th>
<th># Reachable Nodes in Product</th>
<th>Avg Total Task Planning Time (s)</th>
<th>Avg Total Motion Planning Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baxter</td>
<td>3</td>
<td>10</td>
<td>19,370</td>
<td>0.94</td>
<td>0.70</td>
</tr>
<tr>
<td>PR2</td>
<td>4</td>
<td>2</td>
<td>44,100</td>
<td>2.76</td>
<td>12.32</td>
</tr>
<tr>
<td>PR2</td>
<td>4</td>
<td>8</td>
<td>75,511</td>
<td>4.48</td>
<td>8.07</td>
</tr>
<tr>
<td>PR2</td>
<td>4</td>
<td>27</td>
<td>498,000</td>
<td>33.12</td>
<td>31.15</td>
</tr>
</tbody>
</table>

All results averaged over 50 runs
Take-aways

• Formulate manipulation tasks in co-safe LTL
 – Challenge: high dimensional continuous space

• First work to address this problem
 – Through novel abstraction and synergistic planning

• Possible future directions:
 – Faster discrete search
 – Apply abstraction to other manipulation task