Syntax Guided Synthesis
Day 1

Armando Solar-Lezama
Synthesis: ExCape view

\[R = \{ p_0 \ldots p_i \} \]

\[\varphi(p) = \forall \text{in. } \ldots \ p(\text{in}) \ldots \]
Syntax-Guided Program Synthesis

Common theme to many recent efforts
- Sketch (Bodik, Solar-Lezama et al)
- FlashFill (Gulwani et al)
- Implicit programming: Scala^Z3 (Kuncak et al)
- Super-optimization (Schkufza et al)
- Invariant generation (Many recent efforts...)
- TRANSIT for protocol synthesis (Udupa et al)
- Oracle-guided program synthesis (Jha et al)
- Auto-grader (Singh et al)
Key questions

- How do you define a space of programs?
- How do you search it efficiently?
- How do you know when you have found the right answer?
Tools

SyGuS
- General formalism for expressing synthesis problems
- Pros
 - Community effort
 - Multiple implementations based on different algorithms
 - Clean formalism
- Cons
 - Limited expressiveness

Sketch
- Synthesis enabled language
- Pros
 - Full featured language
- Cons
 - Single implementation based on one algorithm
 - SyGuS frontend for sketch
SyGuS - example

Theory QF-LIA

- Types: Integers and Booleans
- Logical connectives, Conditionals, and Linear arithmetic
- Quantifier-free formulas

Function to be synthesized \(f(\text{int } x, \text{int } y) : \text{int} \)

Specification: \(x \leq f(x, y) \land y \leq f(x, y) \land (f(x, y) = x \lor f(x, y) = y) \)

Candidate Implementations: Linear expressions

\[
\text{LinExp} := x \mid y \mid \text{Const} \mid \text{LinExp} + \text{LinExp} \mid \text{LinExp} - \text{LinExp}
\]

No solution exists
From SMT-LIB to SYNTH-LIB

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
 ((Start Int (x y 0 1
 (+ Start Start)
 (- Start Start)
 (ite StartBool Start Start)))
 (StartBool Bool ((and StartBool StartBool)
 (or StartBool StartBool)
 (not StartBool)
 (<= Start Start))))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)
You want to partition N elements over P procs

- How many elements should a processor get?

Obvious answer is N/P

Obvious answer is wrong!
void partition(int p, int P, int N, ref int ibeg, ref int iend) {

 N * P + N\%P

}
Tests as specifications

How does the system know what a partition is?

```c
harness void testPartition(int p, int N, int P){
    if (p>=P || P < 1){
        return;
    }
    int ibeg, iend;
    partition(p, P, N, ibeg, iend);
    assert iend - ibeg < (N/P) + 2;
    if (p+1 < P){
        int ibeg2, iend2;
        partition(p+1, P, N, ibeg2, iend2);
        assert iend == ibeg2;
    }
    if (p==0){
        assert ibeg == 0; }
    if (p==P-1){
        assert iend == N; }
}
```
Overview

Describing program spaces

Counterexample guided synthesis

Synthesis as search: 3 approaches

The limits of CEGIS
Syntax Guided Synthesis

Space of programs is defined syntactically

Structural hypothesis

• What is the space
 • How do you describe it (user’s perspective)
 • How do you represent it (system’s perspective)

• Does it have any properties that can help the search
Example

\[1,4,2,0,7,9,2,5,0,3,2,4,7 \rightarrow 1,2,4,0,2,5,7,9,0,2,3,4,7,0 \]

Process(in) := \(\text{sort(lstExpr[0, firstZero(in)]) + [0] + recursive(lstExpr[firstZero(in)+1, len(in)])} \);
What is the space?

\[\text{lstExpr} := \text{sort(lstExpr)} \]
\[\text{lstExpr}[\text{intExpr},\text{intExpr}] \]
\[\text{lstExpr} + \text{lstExpr} \]
\[\text{recursive(lstExpr)} \]
\[[0] \]
\[\text{in} \]
\[\text{intExpr} := \text{firstZero(lstExpr)} \]
\[\text{len(lstExpr)} \]
\[0 \]
\[\text{intExpr} + 1 \]

The set of all programs in lstExpr
What is the space?

Grammars as definitions of program spaces

• Pro
 • Clean declarative description
 • Easy to sample
 • Easy to explore exhaustively

• Con
 • Insufficiently expressive
What if we know the following:

- Sort is never called more than once in a sub-list.
- Recursive calls should be made on lists whose length is less than $\text{len}(\text{in})$.
- We’ll never have to add one multiple times in a row.
Grammars in SyGuS

(synth-fun max2 ((x Int) (y Int)) Int
 ((Start Int (x y 0 1
 (+ Start Start)
 (- Start Start)
 (ite StartBool Start Start)))
 (StartBool Bool ((and StartBool StartBool)
 (or StartBool StartBool)
 (not StartBool)
 (<= Start Start))))
Generators/Generative models

Programs that produce programs
 • Can be either random or non-deterministic

Pros:
 • Extremely general
 • easy to enforce arbitrary constraints

Cons:
 • Extremely general
 • Hard to analyze and reason about
 • Hard to automatically discover structure of the space
Symmetries

Multiple ways of representing the same problem

\[\text{Expr} := \text{var}*\text{const} \]
\[\quad | \ \text{Expr} + \text{Expr} \]
\[w*\text{c1}+(x*\text{c2}+(y*\text{c3}+z*\text{c4})) \]

- Grammar on the right has fewer symmetries
- Grammar on the left can produce all possible ways to parenthesize
- Can completely eliminate symmetries from the right by enforcing a variable ordering
 - Can’t be done with a grammar, but it can with a generative model

\[\text{Expr(}v\text{min}) := \text{let } v = \text{var}() \text{ in } v*\text{const} \ (\text{assert } v > v\text{min}) \]
\[\quad | \ \text{let } v=\text{var}() \text{ in } v*\text{const} + \text{Expr}(v) \ (\text{assert } v > v\text{min}) \]
Symmetries

Do symmetries matter?
• It depends

Some methods are very sensitive to symmetries
• E.g. symbolic search

Others are largely oblivious to them
• E.g. sampling
CEGIS
The general synthesis problem

\[\exists P \forall in \ (in, P \models Spec) \]
Ensuring correctness

This is a hard problem in general

\[\forall \text{ in } (\text{in}, P \models Spec) \]

Two points of view:

• Not my problem
 • This is not the verification summer school

• Synthesis can make verification simpler
 • Synthesize code that is easier to prove correct
Counterexample guided inductive synthesis

Ideas

• Rely on an oracle to tell you if your program is correct
• If it is not, rely on oracle to generate counterexample inputs
• Reduce to an inductive synthesis problem
CEGIS

Synthesize

\[\exists P \text{ s.t. } \text{Correct}(P, \text{in}_i) \]

\{\text{in}_i\}

Check

\[\exists \text{in} \text{ s.t. } \neg \text{Correct}(P, \text{in}_i) \]

Insert your favorite checker here
∃ a \forall b \exists c \forall d \exists e \forall f \exists g \forall h \exists i \forall j \exists k (a, b, c, d, e, f, g, h, i, j, k)
CEGIS in Sketch

\[Q(c, in) \]

Synthesize

\[Q(c, in_0) \]
\[Q(c, in_2) \]
\[Q(c, in_3) \]

Check

\[\neg Q(c, in_2) \]

\[\neg Q(c, in_3) \]
Syntax Guided Synthesis
Day 2

Armando Solar-Lezama
Explicit Search
Idea

Generate programs one by one
 • Generate & Test approach

Key issues
 • In what order do you generate?
 • Influences performance *and* result quality
 • How do you prune?
 • Essential for scalability
 • How do you keep track of the remaining space?
 • Especially challenging in the context of pruning
Explicit search from grammars

Grammar describes how to generate program fragments from smaller program fragments

\[\text{plist} := \text{set of all terminals} \]
\[\text{while (true)} \{ \]
\[\quad \text{plist} := \text{grow(plist)}; \]
\[\quad \text{forall (p in plist)} \]
\[\quad \quad \text{if(isCorrect(p))} \{ \text{return p; } \} \]
\[\} \]
\[\text{grow(plist)} \{ \]
\[\quad \text{// return a list of all trees generated by} \]
\[\quad \text{// taking a non-terminal and adding} \]
\[\quad \text{// nodes in plist as children} \]
\[\} \]
Explicit search from grammars

Grammar describes how to generate program fragments from smaller program fragments

Level 0

<table>
<thead>
<tr>
<th>in</th>
<th>[0]</th>
<th>0</th>
</tr>
</thead>
</table>

Level 1

<table>
<thead>
<tr>
<th>in</th>
<th>[0][0]</th>
<th>in + in</th>
<th>in + [0]</th>
<th>[0] + [0]</th>
<th>[0] + in</th>
<th>rec(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rec([0])</td>
<td>firstZero(in)</td>
<td>firstZero([0])</td>
<td>len(in)</td>
<td>len([0])</td>
<td>0+1</td>
<td></td>
</tr>
</tbody>
</table>

Set grows very fast!

Large equivalence classes of equivalent programs
Identifying equivalent programs

Program equivalence is hard
 • It is also unnecessary!

Observational Equivalence
 • Are they equivalent wrt the inputs
 • easy to check efficiently
 • sufficient for the purpose of PBE
 • Keep only the simplest one

plist := set of all terminals
while(true){
 plist := grow(plist);
 plist := elimEquivalents(plist);
 forall(p in plist)
 if(isCorrect(p)){ return p; }
}
Explicit search from grammars

Features:

• Search small programs before large programs
• Simple
• Works even with black-box language building blocks
 • no need to have source for sort or firstZero just need to be able to execute them
 • no need to know of any properties about them e.g. automatically ignores sort(sort(in)) without having to know that sort is idempotent
• Complexity depends on the size of the set of distinct programs
 • Copes well with symmetries
Explicit search from grammars

Limitations:

• Only scales to very small programs
• Unsuitable for programs with unknown constants
 • A single unknown 32-bit constant makes the problem intractable
• Hard to generalize to arbitrary generators
 • Relies heavily on recursive structure of grammar
• Hard to take advantage of additional domain knowledge

Example systems:

• Transit [Udupa et al. PLDI 2013]
• Recursive Program Synthesis [Albarghouthi et al., CAV 2013]
Symbolic Search
The general synthesis problem

\[\exists a \forall m \in \text{in}(\text{in}(\text{in}(kPc) \equiv \text{Spec}c)) \]
Example: Least Significant Zero Bit

- 0010 0101 \rightarrow 0000 0010

```c
int W = 32;

bit[W] isolate0 (bit[W] x) {
    bit[W] ret = 0;
    for (int i = 0; i < W; i++)
        if (!x[i]) { ret[i] = 1; return ret; }
}
```

Trick:
- Adding 1 to a string of ones turns the next zero to a 1
- i.e. 000111 + 1 = 001000
Sample Generator

/**
 * Generate the set of all bit-vector expressions involving +, &, xor and bitwise negation (~).
 * the bnd param limits the size of the generated expression.
 */

generator bit[W] gen(bit[W] x, int bnd){
 assert bnd > 0;
 if(??) return x;
 if(??) return ??;
 if(??) return ~gen(x, bnd-1);
 if(??){
 return { | gen(x, bnd-1) (+ | & | ^) gen(x, bnd-1) |};
 }
}
∃ c ∀ \(\forall i \in Q \), \(\forall i \in Q \), \(c \subseteq \text{Spec} \)
A sketch as a constraint system

```c
int lin(int x) {
    if (x > 1)
        return 2*x + 3;
    else
        return 4*x;
}

void main(int x) {
    int t1 = lin(x);
    int t2 = lin(x+1);
    if (x<4) assert t1 >= x*x;
    if (x>=3) assert t2 - t1 == 1;
}
```
Ex: Population count.

```c
int pop (bit[W] x) {
    int count = 0;
    for (int i = 0; i < W; i++) {
        if (x[i]) count++;
    }
    return count;
}
```

\[F(x) = \]
int popSketched (bit[W] x) implements pop {
 repeat(??) {
 x = (x & ??) + ((x >> ??) & ??);
 }
 return x;
}
Performance considerations

Formula size is the biggest challenge

Space of possible programs matters a lot too
MCMC Probabilistic Search

Based on “The Markov Chain Monte Carlo Revolution”
Persi Diaconis
Markov Chains

Let \mathcal{X} be a finite set

A Markov chain is defined by a matrix $K(x, y): \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$

- $K(x, y) \geq 0$
- $\sum_y K(x, y) = 1$

Probability of a series $X_0, X_1, X_2 \ldots$

- $P(X_1 = y | X_0 = x) = K(x, y)$
- $P(X_1 = y, X_2 = z | X_0 = x) = K(x, y)K(y, z)$
- $P(X_2 = z | X_0 = x) = \sum_y K(x, y)K(y, z)$
 - This is matrix multiplication!
Stationary distribution

What is the probability $\pi(x)$ of being in a node x at some arbitrary step?

- $\pi(x) > 0$ and $\sum_x \pi(x) = 1$
- $\pi(y) = \sum_x \pi(x)K(x, y)$
 - i.e. $\pi = \pi K$
Fundamental theorem of (finite) Markov chains

If there is an n_0 s.t. $\forall x, y. \ n > n_0 \Rightarrow K^n(x, y) \geq 0$
- i.e. the matrix is connected.

$\forall x. \ \lim_{n \to \infty} K^n(x, y) = \pi(y)$
- The n’th step of a run starting at x has probability close to $\pi(y)$ of being at y if n is large.
MCMC Based synthesis

Approach:

• Let χ be the space of programs
• Engineer a $K(x, y)$ such that $\pi(x)$ is high for “good programs” and low for “bad programs”
• Pick a random start state x_0
• Simulate the markov process for n steps for some large n.
• By the fundamental theorem, the probability that x_n is a good program will be higher than the probability that it is a bad program
Metropolis algorithm

Start with a markov matrix $J(x, y)$ with $J(x, y) > 0 \leftrightarrow J(y, x) > 0$

$$K(x, y) = \begin{cases} J(x, y) & \text{if } x \neq y, \ A(x, y) \geq 1 \\ J(x, y)A(x, y) & \text{if } x \neq y, \ A(x, y) < 1 \\ J(x, y) + \sum_{z:A(x,z)<1} J(x, z)(1 - A(x, z)) & \text{if } x = y \end{cases}$$

$A(x, y)$ is the acceptance ratio $\frac{\pi(y)J(y,x)}{\pi(x)J(x,y)}$

Note $\pi(x)K(x, y) = \pi(y)K(y, x)$

- Then $\sum_x \pi(x)K(x, y) = \sum_x \pi(y)K(y, x) = \pi(y) \sum_x K(y, x) = \pi(y)$
Tradeoffs

Symbolic
• Pros
 • Very good at discovering unknown constants
 • Flexible
 • Good for large spaces with simple components
• Cons
 • Must be able to reason symbolically about the entire program
 • Complexity of the spec affects complexity of synthesis
 • Requires significant engineering of program space

Enumerative
• Pros
 • Very good at ignoring symmetries
 • Complexity is independent of complexity of spec or components
• Cons
 • Only scales to small programs
 • Fails in the context of unknown constants

Stochastic
• Pros
 • Complexity is independent of complexity of spec
 • Easy to incorporate quantitative criteria
 • Can discover large programs given a good proposal distribution
• Cons
 • Bad for “needle in a haystack” problems
 • Proposal distribution may require significant engineering