Synthesis via Sampling-Based Abstractions
Some Problems and Initial Ideas

Matthias Rungger2 Morteza Lahijanian1
Lydia E. Kavvaki1 Paulo Tabuada2 Moshe Y. Vardi1

1Department of Computer Science, Rice University
2Cyber-Physical Systems Laboratory, UCLA
Problem statement

Given a LTL specification φ and a control system S, find a controller C that enforces φ on S.
Problem statement
Given a LTL specification φ and a control system S, find a controller C that enforces φ on S

Well-known abstraction/refinement approach

1. Compute a finite abstraction \hat{S} of S
2. Synthesize controller \hat{C} based on \hat{S}
3. Refine solution \hat{C} to C
Problem statement
Given a LTL specification φ and a control system S, find a controller C that enforces φ on S

Well-known abstraction/refinement approach

1. Compute a finite abstraction \hat{S} of S
2. Synthesize controller \hat{C} based on \hat{S}
3. Refine solution \hat{C} to C

\implies All done ✓
Problem statement
Given a LTL specification φ and a control system S, find a controller C that enforces φ on S

Well-known abstraction/refinement approach

1. Compute a finite abstraction \hat{S} of S
2. Synthesize controller \hat{C} based on \hat{S}
3. Refine solution \hat{C} to C

\Rightarrow All done ✓

So... what is the problem?
1D: Temperature

\[\dot{T} = c(T_{env} - T) \]
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]

\[|\hat{X}| = 100 \checkmark \]
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

\[|\hat{X}| = 100 \]
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

| \hat{X} | = 100 ✓
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

3D: Unicycle Robot

4D: Pendulum on a cart

\[|\hat{X}| = 100 \checkmark \]
\[|\hat{X}| = 100^2 \checkmark \]
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

3D: Unicycle Robot

\[|\hat{X}| = 100 \quad \checkmark \quad |\hat{X}| = 100^2 \quad \checkmark \]
Computing Abstractions

1D: Temperature
\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

3D: Unicycle Robot

3/6
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

3D: Unicycle Robot

\[|\hat{X}| = 100 \checkmark \]

\[|\hat{X}| = 100^2 \checkmark \]

\[|\hat{X}| = 100^3 ?？ \]
Computing Abstractions

1D: Temperature
\[\dot{T} = c(T_{env} - T) \]

2D: Pendulum

3D: Unicycle Robot

4D: Pendulum on a cart

| \hat{X} | = 100 ✓ | \hat{X} | = 100^2 ✓ | \hat{X} | = 100^3 ?? |
Computing Abstractions

1D: Temperature

\[\dot{T} = c(T_{\text{env}} - T) \]

2D: Pendulum

3D: Unicycle Robot

4D: Pendulum on a cart

\[|\hat{X}| = 100 \quad \checkmark \]
\[|\hat{X}| = 100^2 \quad \checkmark \]
\[|\hat{X}| = 100^3 \quad ?? \]
\[|\hat{X}| = 100^4 \]
Sampling-based Ideas to Compute Abstractions

Synergistic approach for syntactically co-safe LTL

- Lower layer:
 use sampling-based methods to grow the abstraction

- Higher layer:
 use Büchi automaton (from φ) and environment geometry to guide the expansion

- Use “synergistic” layer to alternate between layers

A. Bhatia, L. E. Kavraki, and M. Y. Vardi. “Sampling-based motion planning with temporal goals”. In: ICRA. IEEE, 2010

http://msl.cs.uiuc.edu/~lavalle/
Sampling-based Ideas to Compute Abstractions

Synergistic approach for syntactically co-safe LTL

- Lower layer:
 use sampling-based methods to grow the abstraction

- Higher layer:
 use Büchi automaton (from \(\varphi\)) and environment geometry to guide the expansion

- Use “synergistic” layer to alternate between layers

Solution (point-to-point)

http://msl.cs.uiuc.edu/~lavalle/

curse of dimensionality is no problem
Sampling-based Ideas to Compute Abstractions

Synergistic approach for syntactically co-safe LTL

- Lower layer: use sampling-based methods to grow the abstraction
- Higher layer: use Büchi automaton (from φ) and environment geometry to guide the expansion
- Use “synergistic” layer to alternate between layers

Solution (point-to-point)

The curse of dimensionality is no problem

Problem solved?
What if we have... a set of initial states?

X_{init}
What if we have...

a set of initial states?

- Solve problem for some samples of X_{init}
What if we have...

a set of initial states?

- Solve problem for some samples of X_{init}
- Can we use local controllers to enlarge/robustify solutions?
What if we have...

a set of initial states?

| Solve problem for some samples of X_{init} |
| Can we use local controllers to enlarge/robustify solutions? |

safety specifications? (infinite behavior)
What if we have...

a set of initial states?

- Solve problem for some samples of X_{init}
- Can we use local controllers to enlarge/robustify solutions?

safety specifications? (infinite behavior)

- What are good heuristics to grow the abstraction?
What if we have...

a set of initial states?

\[X_{init} \]

- Solve problem for some samples of \(X_{init} \)
- Can we use local controllers to enlarge/robustify solutions?

safety specifications? (infinite behavior)

- What are good heuristics to grow the abstraction?
- How to find loops?
What if we have...

A set of initial states?

- Solve problem for some samples of X_{init}
- Can we use local controllers to enlarge/robustify solutions?

Safety specifications? (infinite behavior)

- What are good heuristics to grow the abstraction?
- How to find loops?
- Can we merge close-by samples?
To answer those questions we combine

Sampling-based planning (Rice)

Morteza Lahijanian

Lydia Kavraki
To answer those questions we combine

Sampling-based planning (Rice)

Morteza Lahijanian

Lydia Kavraki

Control theory (UCLA)

Matthias Rungger

Paulo Tabuada
To answer those questions we combine

Sampling-based planning (Rice)

- Morteza Lahijanian
- Lydia Kavraki

Control theory (UCLA)

- Matthias Rungger
- Paulo Tabuada

Are we satisfied?
To answer those questions we combine:

Sampling-based planning (Rice)

- Morteza Lahijanian
- Lydia Kavraki

Control theory (UCLA)

- Matthias Rungger
- Paulo Tabuada

Reactive synthesis (Rice)

- Moshe Vardi