Synthesis for Cyber-Physical Systems

Paulo Tabuada

Cyber-Physical Systems Laboratory
Department of Electrical Engineering
University of California at Los Angeles
Organization

- Lecture 1: Introduction to Cyber-Physical Systems, models, and relationships
- Lecture 2: Synthesis using exact finite-state abstractions
- Lecture 3: Synthesis using approximate finite-state abstractions
- Lecture 4: Playtime with Pessoa (Matthias Rungger)
Let us recall the notion of discrete-time linear control system.

Definition (Discrete-time linear control system)

A discrete-time control system is a quadruple \(\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B) \) consisting of:

- the state space \(\mathbb{R}^n \);
- the input space \(\mathbb{R}^m \);
- the difference equation \(\xi(k + 1) = A\xi(k) + B\nu(k) \) where \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \), and \(t \in \mathbb{N}_0 \).
Let us recall the notion of discrete-time linear control system.

Definition (Discrete-time linear control system)

A discrete-time control system is a quadruple $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ consisting of:

- the state space \mathbb{R}^n;
- the input space \mathbb{R}^m;
- the difference equation $\xi(k + 1) = A\xi(k) + B\nu(k)$ where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, and $t \in \mathbb{N}_0$.

Can we represent discrete-time control systems as systems?
Recall that a partition P of \mathbb{R}^n is a collection of sets $P = \{P_i\}_{i \in I}$ such that:

- $\bigcup_{i \in I} P_i = \mathbb{R}^n$;
- $P_i \cap P_j = \emptyset$ for $i \neq j$.

Paulo Tabuada (CyPhyLab - UCLA) Synthesis for Cyber-Physical Systems ExCAPE Summer School’13
Recall that a partition \mathcal{P} of \mathbb{R}^n is a collection of sets $\mathcal{P} = \{P_i\}_{i \in I}$ such that:

- $\bigcup_{i \in I} P_i = \mathbb{R}^n$;
- $P_i \cap P_j = \emptyset$ for $i \neq j$.

Definition

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system and let \mathcal{P} be a partition of \mathbb{R}^n. The system associated with Σ and \mathcal{P}, denoted by $S_{\mathcal{P}}(\Sigma)$, consists of:

- $X = \mathbb{R}^n$;
- $U = \mathbb{R}^m$;
- $x \xrightarrow{u} x'$ if $x' = Ax + Bu$;
- $Y = \mathcal{P}$;
- H defined by $H(x) = P_i$ if $x \in P_i$.
Exact finite-state abstractions for control

Adapted sets

We start with:

- a discrete-time linear control system Σ;
- a finite partition \mathcal{P} of the state space of Σ, e.g., \mathcal{P} induced by the predicates appearing in a LTL formula.
Exact finite-state abstractions for control

Adapted sets

- We start with:
 - a discrete-time linear control system Σ;
 - a finite partition \mathcal{P} of the state space of Σ, e.g., \mathcal{P} induced by the predicates appearing in a LTL formula.
- and ask, when is $S_{\mathcal{P}}(\Sigma)$ bisimilar to a finite-state system?
Exact finite-state abstractions for control

Adapted sets

- We start with:
 - a discrete-time linear control system Σ;
 - a finite partition \mathcal{P} of the state space of Σ, e.g., \mathcal{P} induced by the predicates appearing in a LTL formula.
- and ask, when is $S_\mathcal{P}(\Sigma)$ bisimilar to a finite-state system?

Definition (Adapted sets)

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear system and consider a collection of m vectors $c_1, c_2, \ldots, c_m \in \mathbb{R}^n$ for which there exist numbers $\mu_1, \mu_2, \ldots, \mu_m \in \mathbb{N}$ satisfying:

1. $c_r^T b_r = 0$, $c_r^T Ab_r = 0$, \ldots, $c_r^T A^{\mu_r-2} b_r = 0$, $c_r^T A^{\mu_r-1} b_r \neq 0$, $r = 1, \ldots, m$;
2. the vectors $c_1^T A^{\mu_1-1} B$, $c_2^T A^{\mu_2-1} B$, \ldots, $c_m^T A^{\mu_m-1} B$ are linearly independent,

where b_1, b_2, \ldots, b_m are the columns of B. The class of subsets of \mathbb{R}^n adapted to Σ is formed by finite unions of sets defined by conjunctions of conditions of the form $f \sim 0$ with $f = \pm c_r^T A^l x \pm e$, $e \in \mathbb{R}$, $l \in \{0, 1, \ldots, \mu_r - 1\}$, and $\sim \in \{=, >\}$.
Exact finite-state abstractions for control

Adapted sets

- We start with:
 - a discrete-time linear control system Σ;
 - a finite partition \mathcal{P} of the state space of Σ, e.g., \mathcal{P} induced by the predicates appearing in a LTL formula.
- and ask, when is $S_\mathcal{P}(\Sigma)$ bisimilar to a finite-state system?

Definition (Adapted sets)

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear system and consider a collection of m vectors $c_1, c_2, \ldots, c_m \in \mathbb{R}^n$ for which there exist numbers $\mu_1, \mu_2, \ldots, \mu_m \in \mathbb{N}$ satisfying:

1. $c_r^T b_r = 0$, $c_r^T A b_r = 0$, \ldots, $c_r^T A^{\mu_r-2} b_r = 0$, $c_r^T A^{\mu_r-1} b_r \neq 0$, $r = 1, \ldots, m$;
2. the vectors $c_1^T A^{\mu_1-1} B$, $c_2^T A^{\mu_2-1} B$, \ldots, $c_m^T A^{\mu_m-1} B$ are linearly independent,

where b_1, b_2, \ldots, b_m are the columns of B. The class of subsets of \mathbb{R}^n adapted to Σ is formed by finite unions of sets defined by conjunctions of conditions of the form $f \sim 0$ with $f = \pm c_r^T A^l x \pm e$, $e \in \mathbb{R}$, $l \in \{0, 1, \ldots, \mu_r - 1\}$, and $\sim \in \{=, >\}$.

Paulo Tabuada (CyPhyLab - UCLA)
Synthesis for Cyber-Physical Systems
ExCAPE Summer School’13 6 / 30
Consider the controlled model for the national income inspired by Paul Samuelson’s 1939 model:

\[
\begin{align*}
c(k + 1) &= \alpha(c(k) + i(k) + g(k)) \\
i(k + 1) &= \beta\alpha(c(k) + i(k) + g(k)) - \beta c(k) \\
g(k + 1) &= d(n).
\end{align*}
\]

where the national income is the sum \(c + i + g\) of three kinds of expenditures: consumption (c), investment (i), and government expenditures (g).
Consider the controlled model for the national income inspired by Paul Samuelson’s 1939 model:

\[
\begin{align*}
 c(k+1) &= \alpha (c(k) + i(k) + g(k)) \\
 i(k+1) &= \beta \alpha (c(k) + i(k) + g(k)) - \beta c(k) \\
 g(k+1) &= d(n).
\end{align*}
\]

where the national income is the sum \(c + i + g \) of three kinds of expenditures: consumption \(c \), investment \(i \), and government expenditures \(g \).

Taking \(\alpha = \frac{1}{2} \) and \(\beta = 2 \), the corresponding \(A \) and \(B \) matrices are given by:

\[
A = \begin{bmatrix}
 \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
 -1 & 1 & 1 \\
 0 & 0 & 0
\end{bmatrix}, \quad
B = \begin{bmatrix}
 0 \\
 0 \\
 1
\end{bmatrix}.
\]
Consider the controlled model for the national income inspired by Paul Samuelson’s 1939 model:

\[
\begin{align*}
 c(k+1) &= \alpha(c(k) + i(k) + g(k)), \\
 i(k+1) &= \beta\alpha(c(k) + i(k) + g(k)) - \beta c(k), \\
 g(k+1) &= d(n).
\end{align*}
\]

where the national income is the sum \(c + i + g\) of three kinds of expenditures: consumption (c), investment (i), and government expenditures (g).

Taking \(\alpha = \frac{1}{2}\) and \(\beta = 2\), the corresponding \(A\) and \(B\) matrices are given by:

\[
A = \begin{bmatrix}
 \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
 -1 & 1 & 1 \\
 0 & 0 & 0
\end{bmatrix}, \quad
B = \begin{bmatrix}
 0 \\
 0 \\
 1
\end{bmatrix}.
\]

For this system \(m = 1\) and adapted sets are defined using a single vector \(c_1\). The choice \(c_1 = [1 \ 0 \ 0]^T\) satisfies \(c_1^T B = 0\), \(c_1^T AB \neq 0\) and thus \(\mu_1 = 2\).
Exact finite-state abstractions for control

Adapted sets

\[
A = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
-1 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad c_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T.
\]

Noting that \(c_1^T x = c\) and \(c_1^T Ax = \frac{1}{2}(c + i + g)\), the 8 possible functions \(f\) for a fixed \(e \in \mathbb{R}\) are given by:

\[
\begin{align*}
f_1(c, i, g) &= c + e, \\
f_2(c, i, g) &= c - e, \\
f_3(c, i, g) &= -c + e, \\
f_4(c, i, g) &= -c - e, \\
f_5(c, i, g) &= \frac{1}{2}(c + i + g) + e, \\
f_6(c, i, g) &= \frac{1}{2}(c + i + g) - e, \\
f_7(c, i, g) &= -\frac{1}{2}(c + i + g) + e, \\
f_8(c, i, g) &= -\frac{1}{2}(c + i + g) - e.
\end{align*}
\]
Exact finite-state abstractions for control
Existence of finite-state bisimilar abstractions

- What can we do with adapted sets?
Exact finite-state abstractions for control
Existence of finite-state bisimilar abstractions

What can we do with adapted sets?

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.
Exact finite-state abstractions for control
Existence of finite-state bisimilar abstractions

- What can we do with adapted sets?

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

- Is this the kind of abstraction we need?
Exact finite-state abstractions for control
Existence of finite-state bisimilar abstractions

- What can we do with adapted sets?

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_\mathcal{P}(\Sigma)$.

- Is this the kind of abstraction we need?
- Since $S_\mathcal{P}(\Sigma)$ is deterministic, bisimulation and alternating bisimulation coincide.
Exact finite-state abstractions for control
Existence of finite-state bisimilar abstractions

- What can we do with adapted sets?

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition P of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_P(\Sigma)$.

- Is this the kind of abstraction we need?
- Since $S_P(\Sigma)$ is deterministic, bisimulation and alternating bisimulation coincide.
- How do we compute these abstractions?
Given a system S and a partition \mathcal{P} on X, we can always construct a new system $S_{/\mathcal{P}}$ that simulates S.
Exact finite-state abstractions for control

Quotient systems

Given a system S and a partition \mathcal{P} on X, we can always construct a new system $S_{/\mathcal{P}}$ that simulates S.

Definition (Quotient system)

Let $S = (X, X_0, U, \rightarrow, Y, H)$ be a system and let $\mathcal{P} = \{P_i\}_{i \in I}$ be a partition of X such that $x, x' \in P_i$ for some $i \in I$ implies $H(x) = H(x')$. The quotient of S by \mathcal{P}, denoted by $S_{/\mathcal{P}}$, is the system $(X_{/\mathcal{P}}, X_{/\mathcal{P}0}, U_{/\mathcal{P}}, \rightarrow_{/\mathcal{P}}, Y_{/\mathcal{P}}, H_{/\mathcal{P}})$ consisting of:

- $X_{/\mathcal{P}} = \mathcal{P}$;
- $X_{/\mathcal{P}0} = \{P_i \in \mathcal{P} \mid P_i \cap X_0 \neq \emptyset\}$;
- $U_{/\mathcal{P}} = U$;
- $P_i \xrightarrow{u}_{/\mathcal{P}} P_j$ if there exists $x \xrightarrow{u} x'$ in S with $x \in P_i$ and $x' \in P_j$;
- $Y_{/\mathcal{P}} = Y$;
- $H_{/\mathcal{P}}(P_i) = H(x)$ for any $x \in P_i$.

Paulo Tabuada (CyPhyLab - UCLA) Synthesis for Cyber-Physical Systems ExCAPE Summer School’13 10 / 30
Consider the following system and the partition:

\[\mathcal{P} = \{\{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\}\} = \{P_1, P_2\}. \]
Consider the following system and the partition:

$$\mathcal{P} = \{\{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\}\} = \{P_1, P_2\}.$$

- States X;
Consider the following system and the partition:

$$\mathcal{P} = \{ \{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\} \} = \{P_1, P_2\}.$$

States X; **Initial states** X_0;
Consider the following system and the partition:

\[P = \{ \{ x_{a0} \}, \{ x_{a1}, x_{a2}, x_{a3} \} \} = \{ P_1, P_2 \}. \]

- States \(X \); Initial states \(X_0 \);
- Transitions \(\rightarrow \);
Consider the following system and the partition:

\[\mathcal{P} = \{\{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\}\} = \{P_1, P_2\}. \]

- States \(X \); Initial states \(X_0 \);
- Transitions \(\rightarrow \);
Consider the following system and the partition:

\[P = \{ \{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\} \} = \{P_1, P_2\}. \]

- States \(X \); Initial states \(X_0 \);
- Transitions \(\rightarrow \);
Consider the following system and the partition:

\[\mathcal{P} = \{\{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\}\} = \{P_1, P_2\}. \]

- States \(X \); Initial states \(X_0 \);
- Transitions \(\rightarrow \);
Consider the following system and the partition:

\[\mathcal{P} = \left\{ \{x_{a0}\}, \{x_{a1}, x_{a2}, x_{a3}\} \right\} = \{P_1, P_2\}. \]

- States \(X \); Initial states \(X_0 \);
- Transitions \(\rightarrow \);
- Outputs \(Y, H : X \rightarrow Y \).
By construction, $S_{/\mathcal{P}}$ simulates S. The simulation relation is given by:

$$\{(x, P_i) \in X \times X_{/\mathcal{P}} \mid x \in P_i\}.$$
By construction, S/P simulates S. The simulation relation is given by:

$$\{(x, P_i) \in X \times X/P \mid x \in P_i\}.$$

When can we strengthen this simulation to a bisimulation?
By construction, S/P simulates S. The simulation relation is given by:

$$\{(x, P_i) \in X \times X/P \mid x \in P_i\}.$$

When can we strengthen this simulation to a bisimulation?

Theorem

Let $S = (X, X_0, U, \rightarrow, Y, H)$ be a system and let $\mathcal{P} = \{P_i\}_{i \in I}$ be a partition of X such that $x, x' \in P_i$ for some $i \in I$ implies $H(x) = H(x')$. The relation:

$$R = \{(x, P_i) \in X \times X/\mathcal{P} \mid x \in P_i\}$$

is a simulation relation from S to S/\mathcal{P}. Moreover, R is a bisimulation relation between S and S/\mathcal{P} iff the following is a bisimulation relation between S and S:

$$\{(x, x') \in X \times X \mid x, x' \in P_i \text{ for some } P_i \in \mathcal{P}\}.$$
When:

\[
\{(x, x') \in X \times X \mid x, x' \in P_i \text{ for some } P_i \in \mathcal{P}\}
\]

is not a bisimulation relation we can subdivide (refine) \(\mathcal{P}\) until we reach a bisimulation.
Similarity Relationships
Quotient Systems

- When:
 \[\{(x, x') \in X \times X \mid x, x' \in P_i \text{ for some } P_i \in \mathcal{P}\} \]
 is not a bisimulation relation we can subdivide (refine) \(\mathcal{P} \) until we reach a bisimulation.

- We first define Pre (the dual of Post) for a given system \(S \) and a subset \(P \subseteq X \):

 \[
 \text{Pre}(P) = \left\{ x \in X \mid \exists u \in U \ x \xrightarrow{u} x' \in P \right\}.
 \]
Similarity Relationships
Quotient Systems

- When:
 \[\{(x, x') \in X \times X \mid x, x' \in P_i \text{ for some } P_i \in \mathcal{P}\} \]
 is not a bisimulation relation we can subdivide (refine) \(\mathcal{P} \) until we reach a bisimulation.

- We first define \(\text{Pre} \) (the dual of \(\text{Post} \)) for a given system \(S \) and a subset \(P \subseteq X \):
 \[
 \text{Pre}(P) = \left\{ x \in X \mid \exists u \in U \ x \xrightarrow{u} x' \in P \right\}.
 \]
 and then use it in the following partition refinement algorithm:

 While \((\exists P_i, P_j \in \mathcal{P} \mid \emptyset \neq P_j \cap \text{Pre}(P_i) \neq P_j) \)

 \[
 \{
 P_a := P_j \cap \text{Pre}(P_i);
 P_b := P_j \setminus \text{Pre}(P_i);
 \mathcal{P} := (\mathcal{P} \setminus \{P_j\}) \cup \{P_a, P_b\}
 \}
\]
Similitude Relationships

Quotient Systems

- When:
 \[\{(x, x') \in X \times X \mid x, x' \in P_i \text{ for some } P_i \in \mathcal{P}\}\]
is not a bisimulation relation we can subdivide (refine) \(\mathcal{P}\) until we reach a bisimulation.

- We first define \(\text{Pre}\) (the dual of Post) for a given system \(S\) and a subset \(P \subseteq X\):
 \[\text{Pre}(P) = \left\{x \in X \mid \exists u \in U \ x \xrightarrow{u} x' \in P\right\}.\]

 and then use it in the following partition refinement algorithm:

 While \(\exists P_i, P_j \in \mathcal{P} \mid \emptyset \neq P_j \cap \text{Pre}(P_i) \neq P_j\) do
 \[
 \begin{align*}
 P_a &:= P_j \cap \text{Pre}(P_i); \\
 P_b &:= P_j \setminus \text{Pre}(P_i); \\
 \mathcal{P} &:= (\mathcal{P}\setminus\{P_j\}) \cup \{P_a, P_b\}
 \end{align*}
 \]
Consider again the controlled model for the national income and suppose that we are interested in reducing the internal consumption from 10 units to 2 units while keeping the national income above 20 units.

Which partition to use?

\[P_1 = \{ (c, i, g) \in \mathbb{R}^3 | c + i + g < 20 \} \]

\[P_2 = \{ (c, i, g) \in \mathbb{R}^3 | c + i + g \geq 20 \land c \leq 2 \} \]

\[P_3 = \{ (c, i, g) \in \mathbb{R}^3 | c + i + g \geq 20 \land 2 < c < 10 \} \]

\[P_4 = \{ (c, i, g) \in \mathbb{R}^3 | c + i + g \geq 20 \land c \geq 10 \} \]
Consider again the controlled model for the national income and suppose that we are interested in reducing the internal consumption from 10 units to 2 units while keeping the national income above 20 units.

Which partition to use?
Consider again the controlled model for the national income and suppose that we are interested in reducing the internal consumption from 10 units to 2 units while keeping the national income above 20 units.

Which partition to use?

\[
P_1 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g < 20\}
\]

\[
P_2 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land c \leq 2\}
\]

\[
P_3 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land 2 < c < 10\}
\]

\[
P_4 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land c \geq 10\}.
\]
Consider again the controlled model for the national income and suppose that we are interested in reducing the internal consumption from 10 units to 2 units while keeping the national income above 20 units.

Which partition to use?

\[
P_1 \ = \ \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g < 20\}
\]

\[
P_2 \ = \ \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land c \leq 2\}
\]

\[
P_3 \ = \ \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land 2 < c < 10\}
\]

\[
P_4 \ = \ \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land c \geq 10\}.
\]

Is this an adapted partition?
Consider again the controlled model for the national income and suppose that we are interested in reducing the internal consumption from 10 units to 2 units while keeping the national income above 20 units.

Which partition to use?

\[
P_1 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g < 20\}
\]
\[
P_2 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land c \leq 2\}
\]
\[
P_3 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land 2 < c < 10\}
\]
\[
P_4 = \{(c, i, g) \in \mathbb{R}^3 \mid c + i + g \geq 20 \land c \geq 10\}
\]

Is this an adapted partition? The equalities \(c^T x = c\) and \(c^T Ax = \frac{1}{2}(c + i + g)\) imply:

\[
P_1 = \{(c, i, g) \in \mathbb{R}^3 \mid c^T Ax < 10\}
\]
\[
P_2 = \{(c, i, g) \in \mathbb{R}^3 \mid c^T Ax \geq 10 \land c^T x \leq 2\}
\]
\[
P_3 = \{(c, i, g) \in \mathbb{R}^3 \mid c^T Ax \geq 10 \land 2 < c^T x < 10\}
\]
\[
P_4 = \{(c, i, g) \in \mathbb{R}^3 \mid c^T Ax \geq 10 \land c^T x \geq 10\}
\]
Exact finite-state abstractions for control
Revisiting the economics example

\[P_1 = \{ (c, i, g) \in \mathbb{R}^3 \mid c^T_1 Ax < 10 \} \]
\[P_2 = \{ (c, i, g) \in \mathbb{R}^3 \mid c^T_1 Ax \geq 10 \land c^T_1 x \leq 2 \} \]
\[P_3 = \{ (c, i, g) \in \mathbb{R}^3 \mid c^T_1 Ax \geq 10 \land 2 < c^T_1 x < 10 \} \]
\[P_4 = \{ (c, i, g) \in \mathbb{R}^3 \mid c^T_1 Ax \geq 10 \land c^T_1 x \geq 10 \} . \]

In terms of these regions, our objective can be formulated as the existence of a control strategy driving all the points in region \(P_4 \) to region \(P_2 \) without entering region \(P_1 \).
Exact finite-state abstractions for control
Revisiting the economics example

\[P_1 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax < 10\} \]
\[P_2 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \geq 10 \land c_1^T x \leq 2\} \]
\[P_3 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \geq 10 \land 2 < c_1^T x < 10\} \]
\[P_4 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \geq 10 \land c_1^T x \geq 10\} \].

- In terms of these regions, our objective can be formulated as the existence of a control strategy driving all the points in region \(P_4 \) to region \(P_2 \) without entering region \(P_1 \).
- If we now compute the coarsest bisimulation relation between \(S_P(\Sigma) \) and \(S_P(\Sigma) \) we obtain:

\[P_{1a} = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \leq 2\} \]
\[P_{1b} = \{(c, i, g) \in \mathbb{R}^3 \mid 2 < c_1^T Ax < 10\} \]
\[P_2 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \geq 10 \land c_1^T x \leq 2\} \]
\[P_3 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \geq 10 \land 2 < c_1^T x < 10\} \]
\[P_4 = \{(c, i, g) \in \mathbb{R}^3 \mid c_1^T Ax \geq 10 \land c_1^T x \geq 10\} \].
Exact finite-state abstractions for control
Revisiting the economics example

- Here is the resulting quotient system S/P.

- Does there exist a controller taking the output P_4 to the output P_2 without generating the output P_1?
Exact finite-state abstractions for control

Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

- Why does partition refinement terminate for adapted sets?
Exact finite-state abstractions for control
Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_\mathcal{P}(\Sigma)$.

- Why does partition refinement terminate for adapted sets?
- How different can two linear systems be?
Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

- Why does partition refinement terminate for adapted sets?
- How different can two linear systems be?
- If we start with:
 \[\xi(k + 1) = A\xi(k) + B\nu(k) \]
 and apply an invertible change of coordinates $\xi' = P\xi$ we obtain:
 \[\xi'(k + 1) = P\xi(k + 1) \]
Exact finite-state abstractions for control
Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

- Why does partition refinement terminate for adapted sets?
- How different can two linear systems be?
- If we start with:
 \[\xi(k + 1) = A\xi(k) + B\nu(k) \]
 \[\text{(1)} \]
 and apply an invertible change of coordinates $\xi' = P\xi$ we obtain:
 \[\xi'(k + 1) = P\xi(k + 1) = PA\xi(k) + PB\nu(k) \]
Exact finite-state abstractions for control
Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_\mathcal{P}(\Sigma)$.

- Why does partition refinement terminate for adapted sets?
- How different can two linear systems be?
- If we start with:
 \[\xi(k+1) = A\xi(k) + B\nu(k) \]
 and apply an invertible change of coordinates $\xi' = P\xi$ we obtain:
 \[\xi'(k+1) = P\xi(k+1) = PA\xi(k) + PB\nu(k) = PAP^{-1}\xi'(k) + PB\nu(k). \]
Exact finite-state abstractions for control

Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

- Why does partition refinement terminate for adapted sets?
- How different can two linear systems be?
- If we start with:
 \[\xi(k + 1) = A\xi(k) + B\nu(k) \]
 (1)
 and apply an invertible change of coordinates $\xi' = P\xi$ we obtain:
 \[\xi'(k + 1) = P\xi(k + 1) = PA\xi(k) + PB\nu(k) = PAP^{-1}\xi'(k) + PB\nu(k). \]
 If we further apply an invertible linear feedback $\nu = F\xi' + G\nu'$ we obtain:
 \[\xi'(k + 1) = (PAP^{-1} + PBF)\xi'(k) + PBG\nu'(k). \]
 (2)
Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

$$\xi(k+1) = A\xi(k) + B\nu(k)$$ \hspace{1cm} (3)

$$\xi'(k+1) = (PAP^{-1} + PBF)\xi'(k) + PBG\nu'(k).$$ \hspace{1cm} (4)

- Systems (3) and (4) are equivalent.
Exact finite-state abstractions for control
Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_{\mathcal{P}}(\Sigma)$.

\[
\begin{align*}
\xi(k+1) &= A\xi(k) + Bu(k) \quad (3) \\
\xi'(k+1) &= (PAP^{-1} + PBF)\xi'(k) + PBG\nu'(k). \quad (4)
\end{align*}
\]

- Systems (3) and (4) are equivalent.
- Can we choose P, F, and G to make system (4) simple?
Exact finite-state abstractions for control
Proving termination

Theorem

Let $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ be a discrete-time linear control system. For any finite partition \mathcal{P} of \mathbb{R}^n adapted to Σ there exists a finite-state system bisimilar to $S_\mathcal{P}(\Sigma)$.

\[
\begin{align*}
\xi(k+1) &= A\xi(k) + B\nu(k) & (3) \\
\xi'(k+1) &= (PAP^{-1} + PBF)\xi'(k) + PB\nu'(k). & (4)
\end{align*}
\]

- Systems (3) and (4) are equivalent.
- Can we choose P, F, and G to make system (4) simple?
- Yes, when system (3) is controllable.
Definition (Controllability)

A discrete-time linear control system $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ is controllable if for any two states $x, x' \in \mathbb{R}^n$ there exists $k \in \mathbb{N}$ and an input trajectory $\nu : \{0, 1, \ldots, k\} \rightarrow \mathbb{R}^m$ such that $\xi_{x,\nu} = x'$.

Controllability can be checked by testing the equality:

$$\text{rank} \begin{bmatrix} B & AB & A^2B & \ldots & A^{n-1}B \end{bmatrix} = n.$$
Definition (Controllability)

A discrete-time linear control system $\Sigma = (\mathbb{R}^n, \mathbb{R}^m, A, B)$ is controllable if for any two states $x, x' \in \mathbb{R}^n$ there exists $k \in \mathbb{N}$ and an input trajectory $\nu: \{0, 1, \ldots, k\} \rightarrow \mathbb{R}^m$ such that $\xi_{x, \nu} = x'$.

- Controllability can be checked by testing the equality:
 \[
 \text{rank} \left[\begin{array}{c|c|c|c}
 B & AB & A^2B & \cdots & A^{n-1}B \\
 \end{array} \right] = n.
 \]

- Any controllable linear system can be transformed into the special Brunovsky canonical form by suitably choosing P, F, and G, e.g. ($n = 3$ and $m = 1$):
 \[
 \begin{align*}
 \xi_1(k + 1) &= \xi_2(k) \\
 \xi_2(k + 1) &= \xi_3(k) \\
 \xi_3(k + 1) &= \nu(k).
 \end{align*}
 \]
Any controllable linear system can be transformed into the special Brunovsky canonical form, e.g. \((n = 3 \text{ and } m = 1)\):

\[
\begin{align*}
\xi_1(k + 1) & = \xi_2(k) \\
\xi_2(k + 1) & = \xi_3(k) \\
\xi_3(k + 1) & = \nu(k).
\end{align*}
\]

Consider now predicates that are unions of sets of the form \(\alpha \leq x_1 \leq \beta\) (intervals).
Any controllable linear system can be transformed into the special Brunovksy canonical form, e.g. ($n = 3$ and $m = 1$):

\[
\begin{align*}
\xi_1(k + 1) &= \xi_2(k) \\
\xi_2(k + 1) &= \xi_3(k) \\
\xi_3(k + 1) &= \nu(k).
\end{align*}
\]

Consider now predicates that are unions of sets of the form $\alpha \leq x_1 \leq \beta$ (intervals).

Pre($\alpha \leq x_1 \leq \beta$) = $\alpha \leq x_2 \leq \beta$,
Exact finite-state abstractions for control
Proving termination

- Any controllable linear system can be transformed into the special Brunovsky canonical form, e.g. \((n = 3 \text{ and } m = 1)\):

\[
\begin{align*}
\xi_1(k + 1) &= \xi_2(k) \\
\xi_2(k + 1) &= \xi_3(k) \\
\xi_3(k + 1) &= \nu(k).
\end{align*}
\]

- Consider now predicates that are unions of sets of the form \(\alpha \leq x_1 \leq \beta\) (intervals).

- Pre\((\alpha \leq x_1 \leq \beta) = \alpha \leq x_2 \leq \beta\),

- Pre\((\alpha \leq x_2 \leq \beta) = \alpha \leq x_3 \leq \beta\),
Exact finite-state abstractions for control

Proving termination

- Any controllable linear system can be transformed into the special Brunovsky canonical form, e.g. \((n = 3 \text{ and } m = 1)\):

 \[
 \begin{align*}
 \xi_1(k + 1) &= \xi_2(k) \\
 \xi_2(k + 1) &= \xi_3(k) \\
 \xi_3(k + 1) &= \nu(k).
 \end{align*}
 \]

- Consider now predicates that are unions of sets of the form \(\alpha \leq x_1 \leq \beta\) (intervals).

 - \(\text{Pre}(\alpha \leq x_1 \leq \beta) = \alpha \leq x_2 \leq \beta\),
 - \(\text{Pre}(\alpha \leq x_2 \leq \beta) = \alpha \leq x_3 \leq \beta\),
 - \(\text{Pre}(\alpha \leq x_3 \leq \beta) = \mathbb{R}^3\) since we can always choose an input \(u\) satisfying \(\alpha \leq u \leq \beta\).
Any controllable linear system can be transformed into the special Brunovsky canonical form, e.g. \(n = 3\) and \(m = 1\):

\[
\begin{align*}
\xi_1(k+1) & = \xi_2(k) \\
\xi_2(k+1) & = \xi_3(k) \\
\xi_3(k+1) & = \nu(k).
\end{align*}
\]

Consider now predicates that are unions of sets of the form \(\alpha \leq x_1 \leq \beta\) (intervals).

- \(\text{Pre}(\alpha \leq x_1 \leq \beta) = \alpha \leq x_2 \leq \beta\),
- \(\text{Pre}(\alpha \leq x_2 \leq \beta) = \alpha \leq x_3 \leq \beta\),
- \(\text{Pre}(\alpha \leq x_3 \leq \beta) = \mathbb{R}^3\) since we can always choose an input \(u\) satisfying \(\alpha \leq u \leq \beta\).

Termination of the partition refinement algorithm is guaranteed for adapted sets. The cardinality of the resulting partition is bounded by \(|P|^{\max_r \{\mu_r\}} \leq |P|^n\).
Can we always find an adapted partition for any given specification?
Can we always find an adapted partition for any given specification?

For any controllable discrete-time linear control system, the functions $f = \pm c_r^T A^l x \pm e$ defining the adapted sets can be chosen so that $(c_r^T A^l)^T$ span the state space.
Can we always find an adapted partition for any given specification?

For any controllable discrete-time linear control system, the functions $f = \pm c_r^T A' x \pm e$ defining the adapted sets can be chosen so that $(c_r^T A')^T$ span the state space.

In general, we have to approximate the relevant sets by adapted sets and this can be computationally demanding.
Can we always find an adapted partition for any given specification?

For any controllable discrete-time linear control system, the functions $f = \pm c_i^T A' x \pm e$ defining the adapted sets can be chosen so that $(c_i^T A')^T$ span the state space.

In general, we have to approximate the relevant sets by adapted sets and this can be computationally demanding.

For safety specifications we can integrate the computation of finite-state abstractions with the synthesis of a controller (recent work with M. Rungger and M. Mazo Jr.).
Exact finite-state abstractions for control
A cruise control example

Dynamics:

\[\dot{x} = \begin{bmatrix} \frac{k_s}{m} & -1 & \frac{k_d}{m} \\ 0 & 0 & \frac{k_d}{m} \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \]

with \(x = (d, v_1, v_2) \in \mathbb{R}^3 \) and \(u \in \mathbb{R} \).

- \(d \) distance between the truck and the trailer
- \(v_1 \) velocity of the truck
- \(v_2 \) velocity of the trailer
- \(u \) acceleration
Exact finite-state abstractions for control
A cruise control example

- **Dynamics:**

\[
\dot{x} = \begin{bmatrix}
\frac{k_s}{m} & -1 & \frac{k_d}{m} \\
0 & 0 & \frac{k_d}{m}
\end{bmatrix} x + \begin{bmatrix}
0 \\
0
\end{bmatrix} u
\]

with \(x = (d, v_1, v_2) \in \mathbb{R}^3 \) and \(u \in \mathbb{R} \).

- \(d \) distance between the truck and the trailer
- \(v_1 \) velocity of the truck
- \(v_2 \) velocity of the trailer
- \(u \) acceleration

- **Specification:**

- compliance with speed limits \(v_a, v_b \) after at most \(T \in \mathbb{N} \) time-steps
- acceleration constraints \(u \in [u, \bar{u}] \)
- distance constraints \(d \in [d, \bar{d}] \)
Exact finite-state abstractions for control
A cruise control example

Dynamics:
\[
\dot{x} = \begin{bmatrix}
 0 & -1 & 1 \\
 \frac{k_s}{m} & -\frac{k_d}{m} & \frac{k_d}{m} \\
 0 & 0 & 0
\end{bmatrix} x + \begin{bmatrix}
 0 \\
 0 \\
 1
\end{bmatrix} u
\]
with \(x = (d, v_1, v_2) \in \mathbb{R}^3 \) and \(u \in \mathbb{R} \).

- \(d \) distance between the truck and the trailer
- \(v_1 \) velocity of the truck
- \(v_2 \) velocity of the trailer
- \(u \) acceleration

Specification:
- compliance with speed limits \(v_a, v_b \) after at most \(T \in \mathbb{N} \) time-steps
- acceleration constraints \(u \in [\underline{u}, \overline{u}] \)
- distance constraints \(d \in [\underline{d}, \overline{d}] \)

Safe LTL formula
\[
\square (U \land D \land \varphi_a \land \varphi_b)
\]
with \(\varphi_a \) and \(\varphi_b \) given by
\[
\begin{align*}
 m_a & \implies \lozenge_{\leq T}(t_a W m_b) \\
 m_b & \implies \lozenge_{\leq T}(t_b W m_a)
\end{align*}
\]
- \(m_i \): \(v_i \) is active \(i \in \{a, b\} \)
- \(t_i \): \(v_1 \leq v_i \)
Construct the bad-prefix automaton $A_{\lnot \varphi}$ from the safe LTL formula φ:

$$A_{\lnot \varphi} = (Q, F, \delta, g, 2^P);$$
Construct the bad-prefix automaton $A_{\neg \varphi}$ from the safe LTL formula φ:

$$A_{\neg \varphi} = (Q, F, \delta, g, 2^P);$$

Compose $A_{\neg \varphi}$ with the control system Σ:

$$S = A_{\neg \varphi} \parallel \Sigma;$$
Exact finite-state abstractions for control
Reducing controller synthesis to safety games [Kupferman and Vardi, 2001]

- Construct the bad-prefix automaton $A_{\neg \varphi}$ from the safe LTL formula φ:
 $$A_{\neg \varphi} = (Q, F, \delta, g, 2^P);$$

- Compose $A_{\neg \varphi}$ with the control system Σ:
 $$S = A_{\neg \varphi} \parallel \Sigma;$$

- Given the safe set $K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q$, $H_q \subseteq \mathbb{R}^n$, compute its largest controlled invariant subset:
 $$\mathcal{K}(K) = \{(q, x) \in K \mid \exists u \in \mathbb{R}^m, \text{Post}_u(q, x) \subseteq K\}.$$
Exact finite-state abstractions for control
Reducing controller synthesis to safety games [Kupferman and Vardi, 2001]

- Construct the bad-prefix automaton $A_{\neg \varphi}$ from the safe LTL formula φ:
 \[
 A_{\neg \varphi} = (Q, F, \delta, g, 2^P);
 \]

- Compose $A_{\neg \varphi}$ with the control system Σ:
 \[
 S = A_{\neg \varphi} \parallel \Sigma;
 \]

- Given the safe set $K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q$, $H_q \subseteq \mathbb{R}^n$, compute its largest controlled invariant subset:
 \[
 K(K) = \{(q, x) \in K \mid \exists u \in \mathbb{R}^m, \text{Post}_u(q, x) \subseteq K\}.
 \]
Construct the bad-prefix automaton $A_{\neg \varphi}$ from the safe LTL formula φ:

$$A_{\neg \varphi} = (Q, F, \delta, g, 2^P);$$

Compose $A_{\neg \varphi}$ with the control system Σ:

$$S = A_{\neg \varphi} \parallel \Sigma;$$

Given the safe set $K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q$, $H_q \subseteq \mathbb{R}^n$, compute its largest controlled invariant subset:

$$\mathcal{K}(K) = \{(q, x) \in K \mid \exists u \in \mathbb{R}^m, \text{Post}_u(q, x) \subseteq K\}.$$

We know that:

$$(q, x) \in \mathcal{K}(K) \iff \text{existence of a control strategy enforcing } \varphi \text{ from } x.$$
Fixed point computation [Bertsekas, 1972]:

\[K_{j+1} = \text{pre}(K_j) \cap K_j, \quad K_0 = K \]
Exact finite-state abstractions for control
Computation of controlled invariant subsets

- **Fixed point computation** [Bertsekas, 1972]:

 \[K_{j+1} = \text{pre}(K_j) \cap K_j, \quad K_0 = K \]

- Safe set \(K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q, \quad H_q \subseteq \mathbb{R}^n \), given by:

 \[H_q = \bigcup_{i=1}^{p} H_{qi}, \quad \text{each } H_{qi} \text{ is a polytope} \]

 \(\Rightarrow \) each \(K_j \) is computable and the iteration is known to asymptotically converge:

 \[K(K) = \lim_{j \to \infty} K_j. \]
Exact finite-state abstractions for control
Computation of controlled invariant subsets: Known problems

- No termination guarantees;
No termination guarantees;
Set iterates K_j are not controlled invariant;
Exact finite-state abstractions for control
Computation of controlled invariant subsets: Known problems

- No termination guarantees;
- Set iterates K_j are not controlled invariant;
- Solutions for $K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q, \ H_q \subseteq \mathbb{R}^n$, if H_q is convex and $|Q \setminus F| = 1$:
 - [De Santis et al., 2004]: iteration is initialized with a controlled invariant set $K_0 \subset K$;
 - [Blanchini and Miani, 2008]: modified iteration using contractive sets;
 - Several other methods based on approximations of K;
Exact finite-state abstractions for control
Computation of controlled invariant subsets: Known problems

- No termination guarantees;
- Set iterates K_j are not controlled invariant;
- Solutions for $K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q$, $H_q \subseteq \mathbb{R}^n$, if H_q is convex and $|Q \setminus F| = 1$:
 - [De Santis et al., 2004]: iteration is initialized with a controlled invariant set $K_0 \subset K$;
 - [Blanchini and Miani, 2008]: modified iteration using contractive sets;
 - Several other methods based on approximations of K;
- For H_q given as union of polytopes, the iterative computation introduces combinatorial complexity!
Exact finite-state abstractions for control
Computation of controlled invariant subsets: Known problems

- No termination guarantees;
- Set iterates K_j are not controlled invariant;
- Solutions for $K = \bigcup_{q \in Q \setminus F} \{q\} \times H_q$, $H_q \subseteq \mathbb{R}^n$, if H_q is convex and $|Q \setminus F| = 1$:
 - [De Santis et al., 2004]: iteration is initialized with a controlled invariant set $K_0 \subseteq K$;
 - [Blanchini and Miani, 2008]: modified iteration using contractive sets;
 - Several other methods based on approximations of K;
- For H_q given as union of polytopes, the iterative computation introduces combinatorial complexity!

We can approximate K by sets adapted to the dynamics!
(Finite termination and symbolic implementation)
Exact finite-state abstractions for control
Completeness of approximation

We can under-approximate H_q by a finite union of adapted sets \tilde{H}_q.
We can under-approximate H_q by a finite union of adapted sets \tilde{H}_q.

We say that a set $I \subseteq \mathbb{R}^n$ is strictly inside a set $J \subseteq \mathbb{R}^n$ if there exists $\gamma > 0$ for which:

$$I + B_\gamma(0) \subseteq J.$$
Exact finite-state abstractions for control
Completeness of approximation

We can under-approximate H_q by a finite union of adapted sets \hat{H}_q.

We say that a set $I \subseteq \mathbb{R}^n$ is strictly inside a set $J \subseteq \mathbb{R}^n$ if there exists $\gamma > 0$ for which:

$$I + B_\gamma(0) \subseteq J.$$

Theorem (Completeness [Rungger et al., 2013])

If there exists a controlled invariant set $I \subseteq \mathcal{K}(K)$ for which I_q is strictly inside $\mathcal{K}_q(K)$, then there exists an under-approximation $\tilde{K} = \bigcup_{q \in Q \setminus \{q\}} q \times \hat{H}_q$ of K, with \hat{H}_q being adapted sets, such that $I \subseteq \mathcal{K}(\tilde{K})$.

Paulo Tabuada (CyPhyLab - UCLA) Synthesis for Cyber-Physical Systems ExCAPE Summer School’13 26 / 30
Use binary decision diagrams (BDDs) to implement the iteration:

\[K_{j+1} = \text{pre}(K_j) \cap K_j. \]
Exact finite-state abstractions for control
Symbolic implementation

- Use binary decision diagrams (BDDs) to implement the iteration:
 \[K_{j+1} = \text{pre}(K_j) \cap K_j. \]

- Each set \(K_j \) is encoded by a BDD;
Use binary decision diagrams (BDDs) to implement the iteration:

\[K_{j+1} = \text{pre}(K_j) \cap K_j. \]

Each set \(K_j \) is encoded by a BDD;
The combination of the special Brunovsky normal form with adapted sets results in a simple expression for \(\text{pre}(B_i) \) with \(B_i = [a^i_1, b^i_1] \times \ldots \times [a^i_n, b^i_n] \):

\[\text{pre}(B_i) = \mathbb{R} \times [a^i_1, b^i_1] \times \ldots \times [a^i_{n-1}, b^i_{n-1}]; \]
Exact finite-state abstractions for control
Symbolic implementation

- Use binary decision diagrams (BDDs) to implement the iteration:
 \[K_{j+1} = \text{pre}(K_j) \cap K_j. \]

- Each set \(K_j \) is encoded by a BDD;
- The combination of the special Brunovsky normal form with adapted sets results in a simple expression for \(\text{pre}(B_i) \) with \(B_i = [a_i^1, b_i^1] \times \ldots \times [a_i^n, b_i^n] \):
 \[\text{pre}(B_i) = \mathbb{R} \times [a_i^1, b_i^1] \times \ldots \times [a_i^{n-1}, b_i^{n-1}]; \]
- Symbolical computation of \(\text{pre}(K_j) \) can be done by shifting and variable reordering.
Exact finite-state abstractions for control
Revisiting the cruise control example

Problem description:

- **Σ**: 3 states, 1 input;
- **Safe LTL formula**:

\[\Box (D \land U \land \varphi_a \land \varphi_b \land \varphi_c) \]
Exact finite-state abstractions for control
Revisiting the cruise control example

Problem description:
- $\Sigma : 3$ states, 1 input;
- Safe LTL formula:
 \[\Box (D \land U \land \varphi_a \land \varphi_b \land \varphi_c) \]

Parameters:
- $T \in \{2, 10\}$ number of time steps after which speed limit is enforced;
- $N \in \{10, \ldots, 13\}$ number of bits (2^N boxes) used in each dimension.
Exact finite-state abstractions for control
Revisiting the cruise control example

Problem description:
- $\Sigma : 3$ states, 1 input;
- Safe LTL formula:
 $$\square(D \land U \land \varphi_a \land \varphi_b \land \varphi_c)$$

Parameters:
- $T \in \{2, 10\}$ number of time steps after which speed limit is enforced;
- $N \in \{10, \ldots, 13\}$ number of bits (2^N boxes) used in each dimension.

Error bound:
$$\hat{e} = \frac{\text{vol } K(\hat{K}) - \text{vol } K(\check{K})}{\text{vol } K(\check{K})} \geq \frac{\text{vol } K(K) - \text{vol } K(\check{K})}{\text{vol } K(K)}$$
Exact finite-state abstractions for control
Revisiting the cruise control example

Problem description:
- Σ: 3 states, 1 input;
- Safe LTL formula:
 \[\Box (D \land U \land \varphi_a \land \varphi_b \land \varphi_c) \]

Parameters:
- $T \in \{2, 10\}$ number of time steps after which speed limit is enforced;
- $N \in \{10, \ldots, 13\}$ number of bits (2^N boxes) used in each dimension.

Error bound:
\[\hat{e} = \frac{\text{vol} \mathcal{K}(\tilde{K}) - \text{vol} \mathcal{K}(\tilde{\tilde{K}})}{\text{vol} \mathcal{K}(\tilde{\tilde{K}})} \geq \frac{\text{vol} \mathcal{K}(K) - \text{vol} \mathcal{K}(\tilde{K})}{\text{vol} \mathcal{K}(K)} \]

<table>
<thead>
<tr>
<th>$N \setminus T$</th>
<th>2</th>
<th></th>
<th>10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1m39s</td>
<td>2.31</td>
<td>2m40s</td>
<td>2.38</td>
</tr>
<tr>
<td>11</td>
<td>4m09s</td>
<td>1.01</td>
<td>4m31s</td>
<td>1.04</td>
</tr>
<tr>
<td>12</td>
<td>6m48s</td>
<td>0.58</td>
<td>7m52s</td>
<td>0.62</td>
</tr>
<tr>
<td>13</td>
<td>10m38s</td>
<td>0.43</td>
<td>16m01s</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Exact finite-state abstractions for control
Revisiting the cruise control example: Comparison with the polyhedral approach

- Example 5.1 in [Pérez et al., 2011]:
 3 states + 2 inputs
- Workspace:
 \(X = [0, 30]^3 \) and \(U = [0, 2]^2 \)
- Obstacles in the state space:
 - \(O_1 = [-5, 15]^3 \)
 - \(O_2 = [-5, 5]^3 \)
 - \(O_3 = [-15, 10]^3 \)
- Obstacles in the input space:
 - \(V_1 = [-3/2, 1/2]^2 \)
 - \(V_2 = [-1/4, 1/4]^2 \)
 - \(V_3 = [2/5, 1/5]^2 \)

- Specification with increasing complexity:
 \[
 \begin{align*}
 \varphi_0 &= \square(X \times U) \\
 \varphi_1 &= \square((X \land \neg O_1) \times U) \\
 \varphi_2 &= \square((X \times (U \land \neg V_1)) \\
 \varphi_3 &= \square((X \land \neg O_1) \times (U \land \neg V_1)) \\
 \varphi_4 &= \square((X \land \neg O_1) \times (U \land \neg V_1)) \\
 \varphi_5 &= \square((X \land \neg O_1) \times (U \land \neg V_1)) \\
 \varphi_6 &= \square((X \land \neg O_1) \times (U \land \neg V_1))
 \end{align*}
 \]
Example 5.1 in [Pérez et al., 2011]:
3 states + 2 inputs

Workspace:
\(X = [0, 30]^3\) and \(U = [0, 2]^2\)

Obstacles in the state space:
- \(O_1 = [-5, 15]^3\)
- \(O_2 = [-5, 5]^3\)
- \(O_3 = [-15, 10]^3\)

Obstacles in the input space:
- \(V_1 = [-3/2, 1/2]^2\)
- \(V_2 = [-1/4, 1/4]^2\)
- \(V_3 = [2/5, 1/5]^2\)

Specification with increasing complexity:
\[
\varphi_0 = □(X \times U)
\]
\[
\varphi_1 = □((X \land \neg O_1) \times U)
\]
\[
\varphi_2 = □(X \times (U \land \neg V_1))
\]

Computation times:
Exact finite-state abstractions for control
Revisiting the cruise control example: Comparison with the polyhedral approach

- Example 5.1 in [Pérez et al., 2011]:
 3 states + 2 inputs
- Workspace:
 \[X = [0, 30]^3 \text{ and } U = [0, 2]^2 \]
- Obstacles in the state space:
 - \(O_1 = [-5, 15]^3 \)
 - \(O_2 = [-5, 5]^3 \)
 - \(O_3 = [-15, 10]^3 \)
- Obstacles in the input space:
 - \(V_1 = [-3/2, 1/2]^2 \)
 - \(V_2 = [-1/4, 1/4]^2 \)
 - \(V_3 = [2/5, 1/5]^2 \)

- Specification with increasing complexity:
 \[
 \begin{align*}
 \varphi_0 &= \Box (X \times U) \\
 \varphi_1 &= \Box ((X \land \neg O_1) \times U) \\
 \varphi_2 &= \Box (X \times (U \land \neg V_1))
 \end{align*}
 \]

- Computation times:
 ![Computation times graph]
Observations

- We can handle 5 or 6 continuous variables (state-of-the-art) but there is still room for improvement.

- We recently discovered other classes of sets for which we can construct finite-state bisimulations. Still work in progress;

- Can we generalize these techniques to non-linear systems?

 No!

- But the approximate finite-state abstractions to be discussed in the next lecture do generalize to nonlinear systems.
- We can handle 5 or 6 continuous variables (state-of-the-art) but there is still room for improvement.
- We recently discovered other classes of sets for which we can construct finite-state bisimulations. Still work in progress;
Observations

- We can handle 5 or 6 continuous variables (state-of-the-art) but there is still room for improvement.

- We recently discovered other classes of sets for which we can construct finite-state bisimulations. Still work in progress;

- Can we generalize these techniques to non-linear systems?
We can handle 5 or 6 continuous variables (state-of-the-art) but there is still room for improvement.

We recently discovered other classes of sets for which we can construct finite-state bisimulations. Still work in progress;

Can we generalize these techniques to non-linear systems?

No!
Observations

- We can handle 5 or 6 continuous variables (state-of-the-art) but there is still room for improvement.
- We recently discovered other classes of sets for which we can construct finite-state bisimulations. Still work in progress;
- Can we generalize these techniques to non-linear systems?
- No! But the approximate finite-state abstractions to be discussed in the next lecture do generalize to nonlinear systems.
References and more details

Infinite time reachability of state-space regions by using feedback control.

Set-Theoretic Methods in Control.

Computation of maximal safe sets for switching systems.

Model checking of safety properties.

Maximal closed loop admissible set for linear systems with non-convex polyhedral constraints.

Specification-guided controller synthesis for linear systems and safe linear-time temporal logic.
In *Proc. of Hybrid Systems: Computation and Control*.

Verification and Control of Hybrid Systems: A Symbolic Approach