Education & outreach

- 2013 summer school
- high school students
- intelligent tutoring software

summer school
- decide location format, date, duration, target audience.
- should have people beyond us
- size? how many participants?
- dedicated local organizers, volunteers

Prior experience?
- do we want to host our own or join existing summer school?
 - dagstuhl?
 - we want to host summer school in US, but dagstuhl format is good
 - size: lots of students. ~100 students (phds)?
 - given the size, it might better to join an existing summer school to better handle logistics. see dagstuhl as an example.
- summer school will evolve too
- we need to make some decision soon.

outreach to high school students
- several programs like cornell upenn michigan.
- “programming is no coding”

Hadas Kress-Grazit
CURIE academy - week long summer camp for high school girls
- program robots using matlab?
- 80% never programmed at all
- many are not physical science side, they are from biology, chemical...

EYH - day of workshops for middle school girls
- using the iRobot Create - program using the bump sensor
- programming is not coding, we might be able to use some of the ideas here.

Upenn outreach program
- summer academy in Applied Science & Tech
 - strong connections to penn CIS
- women in computer science
 - high school day for girls
- dining philosophers/penn apps
 - hackathons
 - bring in experts to teach students some high tech
 - spend an afternoon to develop tools, etc.

Michigan
- spring courses with detroit area pre-college engineering program
• summer engineering academy (middle & high school)
• Q: if we can have the students for the whole summer, we can have participants for user study, tool evaluation, etc.
• Q: illinois also has women in computer science program. they might be able to participate the outreach program.

Intelligent tutoring software
• a component of our knowledge transfer
• target audience: high school and undergrad students

Armando Solar-Lezama: smart graders for programming assignments using synthesis technology

• idea: apply the synthesis tech we have to problems of automated grading.
• like automated bug finding, but very different because you already have the right answer.
• the software quality problem is a symptom of programming needs exceeding the supplies of eligible programmers.
• apply the lessons learned to
 o make programmers more productive
 o make programming more accesible
 o reduce the cost of training the next generation
• test-cases based grading is not very good
 o no precise correctness correlation
 o no student tailored feedback, can’t tell the student how far they are
• manual grading by TAs
 o error-prone, time consuming, not scalable.
• PexForFun website
 o people submit programs to complete some tasks
 o the website give feedback whether your program is correct or not
 o Example: a student keep submitting an almost correct solution, but frustrated by the feedback “your program failed this input”, and cannot find the answer
 ■ they are novice users learning programming
• If the system can provide advice how far you are from the correct answer, then the students can learn more.
• approach:
 o use data of previous student solutions
 o correction rules based on corrections
 ■ a<b -> a {<= | > | >= | == | !=} b
 ■ a[i] -> a[{ i+1 | i-1 | i-?i}]
 o Q: can you just measure the distance of student’s program and the correct answer based on syntax info? why use synthesis?
 A: student’s submissions has many syntactical variations, if you want to measure distance, you have to consider semantic meanings.
 and the correction model can be different, the grader can provide a customized set pf correction rules
• transformative for students in under-funded schools
 o reduce the resources required to support quality instructions
• same tech could be used for automatic tutoring
 o identify errors stemming from deep misconceptions
- synthesize small examples that make misconceptions explicit
 - Q: what’s this different compared to program visualization technology?
 A: if you want to run the program visualization backward? the student
 want to ask “if I want to do this, what code changes should I make”? then
 synthesis can help.

Automatically generating problems for online courses in embedded systems
Dorsa Sadigh, uc berkeley
 - recent trend towards massive open online courses
 - generate problems
 - given existing problems, we want to generate similar problems
 - intro to embedded systems
 - problems in the text book
 - example: real-time scheduling
 - studies fixed-priority
 - some of the the problem text can be changed, we can use a
 template text
 - we can formulate solutions
 - generate random numbers to replace holes in template text,
 then use SMT solver to solve the solutions, and we get new
 problems.
 - Example: we have model, property and traces, related one another
 in the 1st problem, you are given <phi> , find <M>; 2nd problem, given
 <M> find <psi>.

implement the ideas for model based problems
bring creativity in automatic problem generation
getting more data from the students this fall.

Q: how to calibrate the difficulty of the problem?
A: if you use the same template, usually the difficulty levels of the new
problems are similar.

Course modules
 - target audience
 - covering the breadth of ExCAPE
 - collaborate between PIs?
 - how things fit in the summer school?
 - master plan?

look forward to involvement of all PIs

Q: combine the summer school and outreach. generate lecture notes in
summer school to use in outreach programs.