Automated Bandwidth Allocation Problems in Data Centers

Yifei Yuan, Anduo Wang, Rajeev Alur, Boon Thau Loo
University of Pennsylvania
Motivation

• Managing network resources is the key computational problem in Data Centers.
• Applying verification/synthesis tool to network resource management?
 – Benefits: exact solutions, correctness guarantees
 – Challenges: efficiency
• This work: bandwidth allocation by SAT/SMT solvers
Bandwidth Allocation Problem
Bandwidth Allocation Problem

Data Center’s Network

- **X₁**: 10G bps
 - **X₂**: 10G bps
 - **S₁**: 1G bps
 - **S₂**: 600M bps
 - **X₃**: 10G bps
 - **S₃**: 500M bps
 - **S₄**: 450M bps
Bandwidth Allocation Problem

Data Center’s Network

Virtual Network

10G bps

X₁

1G bps

10G bps

X₂

600M bps

X₃

500M bps

450M bps

S₁

S₂

S₃

S₄

400M bps

V₁

400M bps

V₂

V₃
Bandwidth Allocation Problem

Data Center’s Network

Virtual Network

1G bps
600M bps
500M bps
450M bps

10G bps
10G bps

400M bps
400M bps

S₁
S₂
S₃
S₄

V₁
V₂
V₃
Bandwidth Allocation Problem

Data Center’s Network

- X_1
 - 10G bps
 - X_2
 - 1G bps
 - 600M bps
 - X_3
 - 450M bps
 - 500M bps

Virtual Network

- V_1
 - 400M bps
 - V_2
 - 400M bps
 - V_3
Bandwidth Allocation Problem

Data Center’s Network

Virtual Network

X₁

X₂

X₃

V₁

V₂

V₃

V₄

10G bps

10G bps

1G bps

600M bps

500M bps

450M bps

400M bps

400M bps
BAP: Facts

• Complexity:
 – NP-complete: tree for physical network & virtual network

• Existing heuristics:
 – Pros: efficient
 – Cons: no guarantee

• Alternative approach: SAT/SMT solving
SAT Encoding: A Glimpse

- $X(v,s)$: VM v is mapped to server s
- $Y(l,e)$: physical link l is reserved bandwidth virtual link e
- $R(l,e,k)$: physical link l is the k-th edge on the routing path for virtual link e
- Server capacity:
 - $\sum_v X(v,s) < c(s)$, for every server s
- Link capacity:
 - $\sum_e Y(l,e) < b(l)$, for every physical link l
Abstraction and Refinement

• Observation: Hierarchical physical network topology in data centers
 – Tree
 – Fat-tree
• Idea:
 – Abstract physical network: small size
 – Refine subgraphs
Abstraction
Abstraction
Abstraction
Abstraction
Abstraction
Refinement

1
2
4
2
Evaluation: Set up

• Physical network topology: tree with 200 servers:
Evaluation: Set up

- Virtual network topology: connected cliques
Evaluation: Set up

• Experiment:
 – Run allocation algorithm
 – Keep mapping the VN to the PN
 – Stop when no more VN can be mapped
Evaluation: Server Utilization

![Bar Chart]

- **Axes:**
 - **Y-axis:** Avg. server utilization
 - **X-axis:** # of VMs

- **Legend:**
 - secondnet
 - sat
 - sat_abs

- **Data Points:**
 - 9 vms: secondnet (0.2), sat (0.8), sat_abs (1.0)
 - 15 vms: secondnet (0.2), sat (1.0), sat_abs (1.2)
Evaluation: Link Utilization

![Graph showing average link utilization for different numbers of VMs. The x-axis represents the number of VMs (9 vms, 15 vms), and the y-axis represents the average link utilization. Three categories are plotted: secondnet, sat, sat_abs.](image)
Evaluation: Running Time per VN

- **Running Time per VN (seconds)**

 - # of VMs in the virtual network

 - secondnet
 - sat
 - sat_abs

 - 9 vms
 - 15 vms
Summary

• Alternative approach solving network resource allocation problem: using SAT/SMT solvers
• Abstract&refinement for scalability
• Strength: optimal solution
• Weakness: efficiency
 – Possible scenario: Optimal reallocation