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Cyber-Physical Systems 

- Software controlled interactions 

with the (continuous) physical world 

 

- Safety critical 

 

- Software is the hard part 

 - Expensive, brittle 

 - Low productivity, High QA cost 

 - Major part of development cost 



The Conformance Problem 

 

Fundamental problem in verification 

-! Equivalence verification for circuits 

-! Translation validation in compilers 

 

Model 1 
 

Model 2 
? 

= 



The Conformance Problem 

Problem: Given two systems, check they have 
equivalent behaviors  

Notion of equivalence: Isomorphism  

Example: 

 - Combinational equivalence checking of 
hardware circuits 

Transference of properties:  

 - All properties are preserved 

 



The Conformance Problem 

Problem: Given two systems, check they have 
equivalent behaviors  

Solution: Bisimulation or trace equivalence 

Example: 

 - Sequential verification, process algebras, 
timed automata, ! 

Transference of properties:  

 - All properties in temporal logics such as CTL 
(bisimulation) or LTL (trace equivalence) are 
preserved 

 

 

 



The Conformance Problem in CPS 

 

Model 1: Complicated but precise dynamics 

Model 2: Model-order reduced dynamics 

 

Model 1 
 

Model 2 
? 

= 



The Conformance Problem in CPS 

 

Model 1: Use fixed-step ODE solver 

Model 2: Use dynamic-step ODE solver 

 

Model 1 
 

Model 2 
? 

= 



The Conformance Problem in CPS 

 

Model 1: Floating point implementation 

Model 2: Fixed point implementation 

 

Model 1 
 

Model 2 
? 

= 



The Conformance Problem 

Problem: Given two systems, check they have 
equivalent behaviors  

Challenges: 

 - Physical world and software may not match 
exactly (sensor noise, discrete modeling of 
continuous states, !) 

 - Bisimulation is too exact 

Solution: ??? [This Talk] 

 



Testing for Conformance 

 

Model 1 

 

Model 2 

Test Generator 
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generate 
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Inputs and Outputs in a CPS 

Inputs and outputs are time-sampled traces of 
values in Rn completed using linear interpolation 
 

 

 

 

Simple Òexact matchingÓ does not work 

Key: Define a metric on traces, check if the output 
traces are close in the metric 

0 T 



Which Metric? 

1.! Easily computed on traces 

2. Preserves a large class of properties 



Which Metric? 

Strawman 1: Max of pointwise differences 

 

 

 

 

 

 

Over-estimates the distance due to timing jitters 

 

supt ! [0,T ]D(x(t), y(t))



Which Metric? 

Strawman 2: Fix a finite set of (STL) properties 

 Check that both traces (closely) satisfy the 
same properties 

 

 

 

 

What is a representative set of properties? 

 



Skorokhod Metric 
Pointwise distance on a rubber sheet 



Skorokhod Metric 



Skorokhod Metric 



Skorokhod Metric 

Timing discrepancy



Retiming Functions 

 

 

 

 

Retiming functions stretch or compress time 

 A retiming function r: [0,T] !  [0, T] 

 is a continuous, strictly increasing, bijective map 

 

Metric: Compare values under a retiming 

  

Timing discrepancy Timing discrepancy

Value discrepancy



Towards Skorokhod 

 

 

 

Retiming functions stretch or compress time 

Given retiming r, maximize value difference:  

  

Timing discrepancy Timing discrepancy

Value discrepancy

supt ! [0,T ]D(x(t), y(r (t)))

L 1, L 2, L !



Towards Skorokhod 

 

 

 

Retiming functions stretch or compress time 

Given retiming r, maximize value difference  

But penalize timing discrepancies: 

  

Timing discrepancy Timing discrepancy

Value discrepancy

max

!

sup
t ! [0,T ]

|t ! r (t)|, supt ! [0,T ]D(x(t), y(r (t)))

"



Skorokhod Metric 

 

 

 

Retiming functions stretch or compress time 

Given retiming r, maximize value difference  

But penalize timing discrepancies 

Minimize over all retimings: 

  

Timing discrepancy Timing discrepancy

Value discrepancy

inf
r

max

!

sup
t ! [0,T ]

|t ! r (t)|, supt ! [0,T ]D(x(t), y(r (t)))

"



Skorokhod Metrics 

Timing discrepancy Timing discrepancy

Value discrepancy
Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T ] !" [0, T ].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y ) = inf
r :retiming

max
!

sup
t ! [0,T ]

|r(t) ! t | , sup
t ! [0,T ]

D
"
x(t) , y (r(t))

# $

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2
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Skorokhod Metrics 

 

 

 

 

Not a new notion: 

-! Used to define a metric on cadlag functions 

-! Used to provide semantics to hybrid systems 
[Caspi, Broucke] 

 

Skorokhod Distance

Retiming functions handle timing discrepancy.
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Skorokhod Metric: Properties 

 

 

 

¥! Original trace y and retimed y * r have events in 
the same order 

¥! A retimed trace need not be piecewise linear! 

¥! Space of retimings is infinite 

¥! So it is not clear we can compute the distance 

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T ] !" [0, T ].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y ) = inf
r :retiming

max
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Polytime Computation 

Theorem [M.Prabhu15]  

1.! The Skorokhod distance between two traces 
can be computed in time polynomial in number 
of dimensions of values (n) and number of time 
points (m) 

2.! There is a streaming sliding window algorithm 
with complexity O(nmW) for window size W 

! for L 1, L2, L"  norms 



Which Metric? 

" !Easily computed on traces 

 - Fully polynomial time on traces 

 - Linear time monitoring for fixed dimension  

 and window size 

2. Preserves a large class of properties 



Transference of Properties 

ÒClose systems satisfy close propertiesÓ 

 

Timed (Quantitative) Linear Temporal Logic =  

LTL + Freeze quantifiers + Value predicates 

 
z1á

!
(|v1| < 5) !" ! z2á

!!
v2

2 + v2
3 # [3, 7]

"
$

!
z2

1 + z2
2 % 16

"""

Freeze 
quantifier 
on time 

Linear 
temporal 
operators 

Predicates 
on values 



TLTL: Expressiveness 

Subsumes Metric temporal logic and Signal 
temporal logic  

pU[a,b]q ! x. (pUy. ((y " x + b) # (y $ x + a) # q))



Transference Theorem 

Theorem: [DeshmukhM.Prabhu] There is a function rx# 
such that for every TLTL formula $,  

if trace %1 satisfies $ and Skorokhod metric 
between %1 and %2 is at most #,  

then %2 satisfies rx#($) 

 

rx ÒexpandsÓ distances by # but maintains LTL 
structure 

 pU[a,b]q expands to  pU[a! 2! ,b+ 2! ]q



Which Metric? 

" !Easily computed on traces 

 - Fully polynomial time on traces 

 - Linear time monitoring for fixed dimension  

 and window size 

" !Preserves a large class of properties 



Simulink Conformance Tester 

 

Simulink 
Model 1 

 

Simulink 
Model 2 

S-Taliro: Test generation 
based on gradient ascent 

dist 
high? 

Bug 

 
generate 
more tests 

Test 
input 

Compute 
Sk. dist.and 
compare to  
tolerance  

 



Case Studies 

1.! LQR control for aircraft pitch control 

A.! Continuous-time model 

B.! Digital implementation with sensor delay 

2.! Air-fuel ratio controller for an ECU (from Toyota) 

A.! Continuous time nonlinear model 

B.! Polynomial approximation to the nonlinear dynamics 

  (but without formal guarantees) 

3.! Engine block model with numerical integrators 

A, B. Two different integration procedures 



Toyota Air-Fuel Ratio Controller 

An industrial challenge benchmark from Toyota 

 

In simulations, the two models were found to be 
ÒcloseÓ w.r.t. a pre-selected set of properties 

Our tool found an input with high Skorokhod 
distance (relative to the engineering tolerance) 

 

Time horizon 10s, 300 time points, 8 min total, 4 min simulation time 



What does this have to do with 
dog walking? 



Algorithms for Skorokhod Metrics 

How can you compute the Skorokhod metric 
between two finite traces? 

 

 

 

1.! Space of retimings is infinite 

2.! Retimed traces may be very complicated (not 
even polynomial) 

 

 

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T ] !" [0, T ].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y ) = inf
r :retiming

max
!

sup
t ! [0,T ]

|r(t) ! t | , sup
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FrŽchet Metric 



Skorokhod and FrŽchet 

FrŽchet Metric

DS(x, y) = inf
r :retiming

max
!

sup
t! [0,T ]

|r(t) ! t | , sup
t! [0,T ]

" x(t) ! y (r(t)) "
"

f , g : [0, T ] "# O

DF(f , g) = inf
! f :[0,1]# [0,T ]
! g :[0,1]# [0,T ]

max
0$ " $ 1

#
#f (! f (" )) ! g

$
! g(" )

%#
#

! f , ! g: reparametrizations
(continuous, strictly increasing, bijective).

No penalty for reparametrizing.
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Trick to add reparameterization penalty: 
-! Add current time as a new component to the state 
-! Compare states using a combination of max-norm  
and D  



Reduce Skorokhod to FrŽchet 

   x : (x, tx) !  f    and   y : (y, ty) !  g 

 

Define the Dmax distance:  

 Dmax((x,tx), (y,ty)) = max(D(x,y), |tx Ð ty|) 
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DS (x, y) = DD max
F (f, g )



Computing the FrŽchet Distance 

1.! Decision problem: Given f, g, and #, check if 
D(f,g) <= # 

 

2.! Characterize a finite set of ÒcriticalÓ delta values 
and compute them for each geometry (L1, L2, 
L" ) 

3.! Binary search over this set 



The Decision Problem 

[AltGodau95] Reduce the problem to a two 
dimensional geometric problem 

-! Pairwise comparison of linear segments 

-! Key Step: Free space diagram 

-! [AltGodau95] did this for L2 and R2  

-! We extend it to L1, L2, L"  and Rn 



Free Space Diagram 

Decide (given ! ): DF(f , g) ! ! ?

Free Space

Free! (f , g) =
!

(! f , ! g) " [0, T ]2 such that
"
" f (! f ) # g(! g)

"
" ! "

#

Positions (! f , ! g) such that corresponding curve values
difference ! " .

2D
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Free! (f , g) =
!

(! f , ! g) ! [0, T ]2 such that
"
" f (! f ) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T ) exists,

then DF(f , g) # " .

Increasing in both parameters
! f , ! g $

Can travel along f without
reversing.
Can travel along g without
reversing.
such that ! f (! f ) " g(! g)! # " .

ÒOnly ifÓmore involved.
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Positions in the two curves  
where values differ by at most #  

Free! (f , g) =
!

(! f , ! g) ! [0, T ]2 such that
"
" f (! f ) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T ) exists,

then DF(f , g) # " .

Increasing in both parameters
! f , ! g $

Can travel along f without
reversing.
Can travel along g without
reversing.
such that kf (! f ) � g(! g)k  " .

ÒOnly ifÓmore involved.
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If there is a monotone  
increasing path from  
(0,0) to (T,T) 
 
Then  D(f, g ) ! !
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If there is a monotone  
increasing path from  
(0,0) to (T,T) 
 
Then  

Increasing in both parameters: can traverse the two 
curves without reversing, while ensuring value 
difference is at most # 

D(f, g ) ! !



Free Space as a Product 
Free! (f , g) =

!
(! f , ! g) ! [0, T ]2 such that

"
" f (! f ) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T ) exists,

then DF (f , g) # " .

Free space for afÞne segment
pairs: (! f , ! g) ! Free! (f[i ] , g[j])
if f (! f ) in i-th afÞne segment.
g(! g) in j-th afÞne segment.

Free! (f , g) =
$

Free! (f[i] , g[j]).

SufÞces to analyze pairs of
linear segments.

Free! (f[i] , g[j]) is convex .

Compute Free! (f[i] , g[j]) only at
cell boundaries.
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Computing Free#(fi,gj) at Boundaries 

Geometric primitives depending on the metric 

 

 

 

 

 

Free! (f , g) =
!

(! f , ! g) ! [0, T ]2 such that
"
" f (! f ) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

Compute Free! (f[i ] , g[j]) only at cell
boundaries.

IRn: Lmax
2 quadratic equations.

Lmax
! intersection inequalities.

Lmax
1 naive gives exponential.

We do in O(n2).

IRn : Decide DF(f , g) # " ?

Lmax
2 , Lmax

! in O(nm2).

Lmax
1 in O(n2m2).

m is number of afÞne segments.

Sliding window based: Linear in m.
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Free! (f , g) =
!

(! f , ! g) ! [0, T ]2 such that
"
" f (! f ) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

Compute Free! (f[i ] , g[j]) only at cell
boundaries.

IRn: Lmax
2 quadratic equations.

Lmax
! intersection inequalities.

Lmax
1 naive gives exponential.

We do in O(n2).

IRn : Decide DF(f , g) # " ?

Lmax
2 , Lmax

! in O(nm2).

Lmax
1 in O(n2m2).

m is number of afÞne segments.

Sliding window based: Linear in m.
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Critical Values 

# is critical if Free#(fi, gj) becomes non-empty at a cell 
boundary 

Geometrically, # for which a horizontal line can go from 
cell (i,j) to cell (k,j) 

Critical values of !

! for which Free! (f[i] , g[j]) becomes
non-empty at cell boundary.

! for which a horizontal line can go cell
i , j to cell k, j .

! for which vertical lines...
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Critical values of !

T

0

0 T

! for which Free! (f[i], g[j]) becomes
non-empty at cell boundary.

! for which a horizontal line can go cell
i , j to cell k , j .

! for which vertical lines...
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Reduces to geometric primitives  
Computable in polynomial time 



Theorems: Skorokhod Metric 
Computing the Skorokhod Distance

Compute Distance: Polygonal Traces in IRn

L2: O
!
m3 (n + log(m))

"
.

L1, L! : O
!
m3 (poly(n) + log(m))

"
.

m is number of afÞne segments.

Monitor Polygonal IRn Traces: Decide DS(x, y) ! ! ?

L2, L! in O(nm2).

L1 in O(n2m2).

Sliding window based: Linear in m.
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And thatÕs how dog walking applies to safe CPS! 

Computing the Skorokhod Distance
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Extensions: Tubes 

Given two sets F1, F2 of trajectories, define 

 

 

 

Can we compute the distance between two sets of 
trajectories? 

In practice, we get reachability tubes that over-
approximate F1 and F2 

 

 

D(F1, F2) = sup
f 1 ! F1 ,f 2 ! F2

DS (f 1, f 2)



Extensions: Tubes 

Theorem [M.Prabhu16]  

Given polygonal reachability tubes F1 and F2, and 
parameter &, one can compute lower and upper 
bounds on                     

 

With bound & in polynomial time in F1, F2, and & 

D(F1, F2)



Conclusion 

Skorokhod distances provide a quantitative 
generalization of trace equivalence that is 
well-suited to cyber-physical systems 

 

¥! Tractable to compute between traces 

¥! Preserves logical properties approximately 

 



Thank You 
 

http://www.mpi-sws.org/~rupak/ 
 

References:  
HSCC 2015, CAV 2015, HSCC 2016 



End-to-End Arguments 

Carry the mathematical arguments for correctness 
for control systems down to software 
implementations 

  Control Theory + Program Analysis  

= 

Reliable Embedded Systems 

 


