
Testing System Conformance for
Cyber-Physical Systems

ÒTesting systems by walking the dogÓ

Rupak Majumdar

Max Planck Institute for Software Systems

Joint work with
Vinayak Prabhu (MPI-SWS) and Jyo Deshmukh (Toyota)

Cyber-Physical Systems

- Software controlled interactions

with the (continuous) physical world

- Safety critical

- Software is the hard part

 - Expensive, brittle

 - Low productivity, High QA cost

 - Major part of development cost

The Conformance Problem

Fundamental problem in verification

-! Equivalence verification for circuits

-! Translation validation in compilers

Model 1

Model 2
?

=

The Conformance Problem

Problem: Given two systems, check they have
equivalent behaviors

Notion of equivalence: Isomorphism

Example:

 - Combinational equivalence checking of
hardware circuits

Transference of properties:

 - All properties are preserved

The Conformance Problem

Problem: Given two systems, check they have
equivalent behaviors

Solution: Bisimulation or trace equivalence

Example:

 - Sequential verification, process algebras,
timed automata, !

Transference of properties:

 - All properties in temporal logics such as CTL
(bisimulation) or LTL (trace equivalence) are
preserved

The Conformance Problem in CPS

Model 1: Complicated but precise dynamics

Model 2: Model-order reduced dynamics

Model 1

Model 2
?

=

The Conformance Problem in CPS

Model 1: Use fixed-step ODE solver

Model 2: Use dynamic-step ODE solver

Model 1

Model 2
?

=

The Conformance Problem in CPS

Model 1: Floating point implementation

Model 2: Fixed point implementation

Model 1

Model 2
?

=

The Conformance Problem

Problem: Given two systems, check they have
equivalent behaviors

Challenges:

 - Physical world and software may not match
exactly (sensor noise, discrete modeling of
continuous states, !)

 - Bisimulation is too exact

Solution: ??? [This Talk]

Testing for Conformance

Model 1

Model 2

Test Generator

=
no

Bug

yes

generate
more tests

Test
input

Testing for Conformance

Model 1

Model 2

Test Generator

=
no

Bug

yes

generate
more tests

Test
input

Inputs and Outputs in a CPS

Inputs and outputs are time-sampled traces of
values in Rn completed using linear interpolation

Simple Òexact matchingÓ does not work

Key: Define a metric on traces, check if the output
traces are close in the metric

0 T

Which Metric?

1.! Easily computed on traces

2. Preserves a large class of properties

Which Metric?

Strawman 1: Max of pointwise differences

Over-estimates the distance due to timing jitters

supt ! [0,T]D(x(t), y(t))

Which Metric?

Strawman 2: Fix a finite set of (STL) properties

 Check that both traces (closely) satisfy the
same properties

What is a representative set of properties?

Skorokhod Metric
Pointwise distance on a rubber sheet

Skorokhod Metric

Skorokhod Metric

Skorokhod Metric

Timing discrepancy

Retiming Functions

Retiming functions stretch or compress time

 A retiming function r: [0,T] ! [0, T]

 is a continuous, strictly increasing, bijective map

Metric: Compare values under a retiming

Timing discrepancy Timing discrepancy

Value discrepancy

Towards Skorokhod

Retiming functions stretch or compress time

Given retiming r, maximize value difference:

Timing discrepancy Timing discrepancy

Value discrepancy

supt ! [0,T]D(x(t), y(r (t)))

L 1, L 2, L !

Towards Skorokhod

Retiming functions stretch or compress time

Given retiming r, maximize value difference

But penalize timing discrepancies:

Timing discrepancy Timing discrepancy

Value discrepancy

max

!

sup
t ! [0,T]

|t ! r (t)|, supt ! [0,T]D(x(t), y(r (t)))

"

Skorokhod Metric

Retiming functions stretch or compress time

Given retiming r, maximize value difference

But penalize timing discrepancies

Minimize over all retimings:

Timing discrepancy Timing discrepancy

Value discrepancy

inf
r

max

!

sup
t ! [0,T]

|t ! r (t)|, supt ! [0,T]D(x(t), y(r (t)))

"

Skorokhod Metrics

Timing discrepancy Timing discrepancy

Value discrepancy
Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T] !" [0, T].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y) = inf
r :retiming

max
!

sup
t ! [0,T]

|r(t) ! t | , sup
t ! [0,T]

D
"
x(t) , y (r(t))

$

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2

5 / 16
Quantifying Conformance Using the Skorokhod Metric

!

Skorokhod Metrics

Not a new notion:

-! Used to define a metric on cadlag functions

-! Used to provide semantics to hybrid systems
[Caspi, Broucke]

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T] !" [0, T].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y) = inf
r :retiming

max
!

sup
t ! [0,T]

|r(t) ! t | , sup
t ! [0,T]

D
"
x(t) , y (r(t))

$

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2

5 / 16
Quantifying Conformance Using the Skorokhod Metric

!

Skorokhod Metric: Properties

¥! Original trace y and retimed y * r have events in
the same order

¥! A retimed trace need not be piecewise linear!

¥! Space of retimings is infinite

¥! So it is not clear we can compute the distance

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T] !" [0, T].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y) = inf
r :retiming

max
!

sup
t ! [0,T]

|r(t) ! t | , sup
t ! [0,T]

D
"
x(t) , y (r(t))

$

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2

5 / 16
Quantifying Conformance Using the Skorokhod Metric

!

Polytime Computation

Theorem [M.Prabhu15]

1.! The Skorokhod distance between two traces
can be computed in time polynomial in number
of dimensions of values (n) and number of time
points (m)

2.! There is a streaming sliding window algorithm
with complexity O(nmW) for window size W

! for L 1, L2, L" norms

Which Metric?

" !Easily computed on traces

 - Fully polynomial time on traces

 - Linear time monitoring for fixed dimension

 and window size

2. Preserves a large class of properties

Transference of Properties

ÒClose systems satisfy close propertiesÓ

Timed (Quantitative) Linear Temporal Logic =

LTL + Freeze quantifiers + Value predicates

z1á

!
(|v1| < 5) !" ! z2á

!!
v2

2 + v2
3 # [3, 7]

"
$

!
z2

1 + z2
2 % 16

"""

Freeze
quantifier
on time

Linear
temporal
operators

Predicates
on values

TLTL: Expressiveness

Subsumes Metric temporal logic and Signal
temporal logic

pU[a,b]q ! x. (pUy. ((y " x + b) # (y $ x + a) # q))

Transference Theorem

Theorem: [DeshmukhM.Prabhu] There is a function rx#
such that for every TLTL formula $,

if trace %1 satisfies $ and Skorokhod metric
between %1 and %2 is at most #,

then %2 satisfies rx#($)

rx ÒexpandsÓ distances by # but maintains LTL
structure

 pU[a,b]q expands to pU[a! 2! ,b+ 2!]q

Which Metric?

" !Easily computed on traces

 - Fully polynomial time on traces

 - Linear time monitoring for fixed dimension

 and window size

" !Preserves a large class of properties

Simulink Conformance Tester

Simulink
Model 1

Simulink
Model 2

S-Taliro: Test generation
based on gradient ascent

dist
high?

Bug

generate
more tests

Test
input

Compute
Sk. dist.and
compare to
tolerance

Case Studies

1.! LQR control for aircraft pitch control

A.! Continuous-time model

B.! Digital implementation with sensor delay

2.! Air-fuel ratio controller for an ECU (from Toyota)

A.! Continuous time nonlinear model

B.! Polynomial approximation to the nonlinear dynamics

 (but without formal guarantees)

3.! Engine block model with numerical integrators

A, B. Two different integration procedures

Toyota Air-Fuel Ratio Controller

An industrial challenge benchmark from Toyota

In simulations, the two models were found to be
ÒcloseÓ w.r.t. a pre-selected set of properties

Our tool found an input with high Skorokhod
distance (relative to the engineering tolerance)

Time horizon 10s, 300 time points, 8 min total, 4 min simulation time

What does this have to do with
dog walking?

Algorithms for Skorokhod Metrics

How can you compute the Skorokhod metric
between two finite traces?

1.! Space of retimings is infinite

2.! Retimed traces may be very complicated (not
even polynomial)

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T] !" [0, T].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y) = inf
r :retiming

max
!

sup
t ! [0,T]

|r(t) ! t | , sup
t ! [0,T]

D
"
x(t) , y (r(t))

$

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2

5 / 16
Quantifying Conformance Using the Skorokhod Metric

!

FrŽchet Metric

Skorokhod and FrŽchet

FrŽchet Metric

DS(x, y) = inf
r :retiming

max
!

sup
t! [0,T]

|r(t) ! t | , sup
t! [0,T]

" x(t) ! y (r(t)) "
"

f , g : [0, T] "# O

DF(f , g) = inf
! f :[0,1]# [0,T]
! g :[0,1]# [0,T]

max
0$ " $ 1

#
#f (! f (")) ! g

$
! g(")

%#
#

! f , ! g: reparametrizations
(continuous, strictly increasing, bijective).

No penalty for reparametrizing.

10 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T] !" [0, T].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y) = inf
r :retiming

max
!

sup
t ! [0,T]

|r(t) ! t | , sup
t ! [0,T]

D
"
x(t) , y (r(t))

$

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2

5 / 16
Quantifying Conformance Using the Skorokhod Metric

!
Trick to add reparameterization penalty:
-! Add current time as a new component to the state
-! Compare states using a combination of max-norm
and D

Reduce Skorokhod to FrŽchet

 x : (x, tx) ! f and y : (y, ty) ! g

Define the Dmax distance:

 Dmax((x,tx), (y,ty)) = max(D(x,y), |tx Ð ty|)

FrŽchet Metric

DS(x, y) = inf
r :retiming

max
!

sup
t! [0,T]

|r(t) ! t | , sup
t! [0,T]

" x(t) ! y (r(t)) "
"

f , g : [0, T] "# O

DF(f , g) = inf
! f :[0,1]# [0,T]
! g :[0,1]# [0,T]

max
0$ " $ 1

#
#f (! f (")) ! g

$
! g(")

%#
#

! f , ! g: reparametrizations
(continuous, strictly increasing, bijective).

No penalty for reparametrizing.

10 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Skorokhod Distance

Retiming functions handle timing discrepancy.

r : [0, T] !" [0, T].
Continuous, monotone increasing, bijective.

Skorokhod Metric

DS(x , y) = inf
r :retiming

max
!

sup
t ! [0,T]

|r(t) ! t | , sup
t ! [0,T]

D
"
x(t) , y (r(t))

$

inf over retimings r :
max

"
timing discrepancy, value discrepancy

#
.

L1, L2, L! norms for IRn value discrepancy

D(p1, p2) = " p1 ! p2" L2

5 / 16
Quantifying Conformance Using the Skorokhod Metric

!

DS (x, y) = DD max
F (f, g)

Computing the FrŽchet Distance

1.! Decision problem: Given f, g, and #, check if
D(f,g) <= #

2.! Characterize a finite set of ÒcriticalÓ delta values
and compute them for each geometry (L1, L2,
L")

3.! Binary search over this set

The Decision Problem

[AltGodau95] Reduce the problem to a two
dimensional geometric problem

-! Pairwise comparison of linear segments

-! Key Step: Free space diagram

-! [AltGodau95] did this for L2 and R2

-! We extend it to L1, L2, L" and Rn

Free Space Diagram

Decide (given !): DF(f , g) ! ! ?

Free Space

Free! (f , g) =
!

(! f , ! g) " [0, T]2 such that
"
" f (! f) # g(! g)

"
" ! "

#

Positions (! f , ! g) such that corresponding curve values
difference ! " .

2D

16 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Free! (f , g) =
!

(! f , ! g) ! [0, T]2 such that
"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T) exists,

then DF(f , g) # " .

Increasing in both parameters
! f , ! g $

Can travel along f without
reversing.
Can travel along g without
reversing.
such that ! f (! f) " g(! g)! # " .

ÒOnly ifÓmore involved.

17 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Positions in the two curves
where values differ by at most #

Free! (f , g) =
!

(! f , ! g) ! [0, T]2 such that
"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T) exists,

then DF(f , g) # " .

Increasing in both parameters
! f , ! g $

Can travel along f without
reversing.
Can travel along g without
reversing.
such that kf (! f) � g(! g)k " .

ÒOnly ifÓmore involved.

17 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

If there is a monotone
increasing path from
(0,0) to (T,T)

Then D(f, g) ! !

Free Space Diagram

Positions in the two curves
where values differ by at most #

Free! (f , g) =
!

(! f , ! g) ! [0, T]2 such that
"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T) exists,

then DF(f , g) # " .

Increasing in both parameters
! f , ! g $

Can travel along f without
reversing.
Can travel along g without
reversing.
such that kf (! f) � g(! g)k " .

ÒOnly ifÓmore involved.

17 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

If there is a monotone
increasing path from
(0,0) to (T,T)

Then

Increasing in both parameters: can traverse the two
curves without reversing, while ensuring value
difference is at most #

D(f, g) ! !

Free Space as a Product
Free! (f , g) =

!
(! f , ! g) ! [0, T]2 such that

"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

0

0 T

If increasing monotone curve
from (0, 0) to (T , T) exists,

then DF (f , g) # " .

Free space for afÞne segment
pairs: (! f , ! g) ! Free! (f[i] , g[j])
if f (! f) in i-th afÞne segment.
g(! g) in j-th afÞne segment.

Free! (f , g) =
$

Free! (f[i] , g[j]).

SufÞces to analyze pairs of
linear segments.

Free! (f[i] , g[j]) is convex .

Compute Free! (f[i] , g[j]) only at
cell boundaries.

18 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Free! (f , g) =
!

(! f , ! g) ! [0, T]2 such that
"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " . If increasing monotone curve

from (0, 0) to (T , T) exists,
then DF (f , g) # " .

Free space for afÞne segment
pairs: (! f , ! g) ! Free! (f[i] , g[j])
if f (! f) in i-th afÞne segment.
g(! g) in j-th afÞne segment.

Free! (f , g) =
$

Free! (f[i] , g[j]).

SufÞces to analyze pairs of
linear segments.

Free! (f[i] , g[j]) is convex .

Compute Free! (f[i] , g[j]) only at
cell boundaries.

18 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Computing Free#(fi,gj) at Boundaries

Geometric primitives depending on the metric

Free! (f , g) =
!

(! f , ! g) ! [0, T]2 such that
"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

Compute Free! (f[i] , g[j]) only at cell
boundaries.

IRn: Lmax
2 quadratic equations.

Lmax
! intersection inequalities.

Lmax
1 naive gives exponential.

We do in O(n2).

IRn : Decide DF(f , g) # " ?

Lmax
2 , Lmax

! in O(nm2).

Lmax
1 in O(n2m2).

m is number of afÞne segments.

Sliding window based: Linear in m.

19 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Free! (f , g) =
!

(! f , ! g) ! [0, T]2 such that
"
" f (! f) " g(! g)

"
" # "

#

Positions (! f , ! g) such that corresponding curve values
difference # " .

T

Compute Free! (f[i] , g[j]) only at cell
boundaries.

IRn: Lmax
2 quadratic equations.

Lmax
! intersection inequalities.

Lmax
1 naive gives exponential.

We do in O(n2).

IRn : Decide DF(f , g) # " ?

Lmax
2 , Lmax

! in O(nm2).

Lmax
1 in O(n2m2).

m is number of afÞne segments.

Sliding window based: Linear in m.

19 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Critical Values

is critical if Free#(fi, gj) becomes non-empty at a cell
boundary

Geometrically, # for which a horizontal line can go from
cell (i,j) to cell (k,j)

Critical values of !

! for which Free! (f[i] , g[j]) becomes
non-empty at cell boundary.

! for which a horizontal line can go cell
i , j to cell k, j .

! for which vertical lines...

22 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Critical values of !

T

0

0 T

! for which Free! (f[i], g[j]) becomes
non-empty at cell boundary.

! for which a horizontal line can go cell
i , j to cell k , j .

! for which vertical lines...

22 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Reduces to geometric primitives
Computable in polynomial time

Theorems: Skorokhod Metric
Computing the Skorokhod Distance

Compute Distance: Polygonal Traces in IRn

L2: O
!
m3 (n + log(m))

"
.

L1, L! : O
!
m3 (poly(n) + log(m))

"
.

m is number of afÞne segments.

Monitor Polygonal IRn Traces: Decide DS(x, y) ! ! ?

L2, L! in O(nm2).

L1 in O(n2m2).

Sliding window based: Linear in m.

27 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

And thatÕs how dog walking applies to safe CPS!

Computing the Skorokhod Distance

Compute Distance: Polygonal Traces in IRn

L2: O
!
m3 (n + log(m))

"
.

L1, L! : O
!
m3 (poly(n) + log(m))

"
.

m is number of afÞne segments.

Monitor Polygonal IRn Traces: Decide DS(x, y) ! ! ?

L2, L! in O(nm2).

L1 in O(n2m2).

Sliding window based: Linear in m.

27 / 28
Computing the Skorokhod Distance between Polygonal Traces

!

Extensions: Tubes

Given two sets F1, F2 of trajectories, define

Can we compute the distance between two sets of
trajectories?

In practice, we get reachability tubes that over-
approximate F1 and F2

D(F1, F2) = sup
f 1 ! F1 ,f 2 ! F2

DS (f 1, f 2)

Extensions: Tubes

Theorem [M.Prabhu16]

Given polygonal reachability tubes F1 and F2, and
parameter &, one can compute lower and upper
bounds on

With bound & in polynomial time in F1, F2, and &

D(F1, F2)

Conclusion

Skorokhod distances provide a quantitative
generalization of trace equivalence that is
well-suited to cyber-physical systems

¥! Tractable to compute between traces

¥! Preserves logical properties approximately

Thank You

http://www.mpi-sws.org/~rupak/

References:
HSCC 2015, CAV 2015, HSCC 2016

End-to-End Arguments

Carry the mathematical arguments for correctness
for control systems down to software
implementations

 Control Theory + Program Analysis

=

Reliable Embedded Systems

